Complex roots of unity #
In this file we show that the n-th complex roots of unity
are exactly the complex numbers exp (2 * π * I * (i / n)) for i ∈ Finset.range n.
Main declarations #
Complex.mem_rootsOfUnity: the complexn-th roots of unity are exactly the complex numbers of the formexp (2 * π * I * (i / n))for somei < n.Complex.card_rootsOfUnity: the number ofn-th roots of unity is exactlyn.Complex.norm_rootOfUnity_eq_one: A complex root of unity has norm1.
theorem
IsPrimitiveRoot.arg_ext
{n m : ℕ}
{ζ μ : ℂ}
(hζ : IsPrimitiveRoot ζ n)
(hμ : IsPrimitiveRoot μ m)
(hn : n ≠ 0)
(hm : m ≠ 0)
(h : ζ.arg = μ.arg)
: