The Euler-Mascheroni constant γ #
We define the constant γ, and give upper and lower bounds for it.
Main definitions and results #
Real.eulerMascheroniConstant: the constantγReal.tendsto_harmonic_sub_log: the sequencen ↦ harmonic n - log ntends toγasn → ∞one_half_lt_eulerMascheroniConstantandeulerMascheroniConstant_lt_two_thirds: upper and lower bounds.
Outline of proofs #
We show that
- the sequence
eulerMascheroniSeqgiven byn ↦ harmonic n - log (n + 1)is strictly increasing; - the sequence
eulerMascheroniSeq'given byn ↦ harmonic n - log n, modified with a junk value forn = 0, is strictly decreasing; - the difference
eulerMascheroniSeq' n - eulerMascheroniSeq nis non-negative and tends to 0.
It follows that both sequences tend to a common limit γ, and we have the inequality
eulerMascheroniSeq n < γ < eulerMascheroniSeq' n for all n. Taking n = 6 gives the bounds
1 / 2 < γ < 2 / 3.
The Euler-Mascheroni constant γ.
Instances For
theorem
Real.tendsto_harmonic_sub_log_add_one :
Filter.Tendsto (fun (n : ℕ) => ↑(harmonic n) - log (↑n + 1)) Filter.atTop (nhds eulerMascheroniConstant)
theorem
Real.tendsto_harmonic_sub_log :
Filter.Tendsto (fun (n : ℕ) => ↑(harmonic n) - log ↑n) Filter.atTop (nhds eulerMascheroniConstant)
Lower bound for γ. (The true value is about 0.57.)
Upper bound for γ. (The true value is about 0.57.)