The maximal power of one natural number dividing another #
Here we introduce p.maxPowDiv n which returns the maximal k : ℕ for
which p ^ k ∣ n with the convention that maxPowDiv 1 n = 0 for all n.
We prove enough about maxPowDiv in this file to show equality with Nat.padicValNat in
padicValNat.padicValNat_eq_maxPowDiv.
The implementation of maxPowDiv improves on the speed of padicValNat.
Tail recursive function which returns the largest k : ℕ such that p ^ k ∣ n for any p : ℕ.
padicValNat_eq_maxPowDiv allows the code generator to use this definition for padicValNat
Equations
- p.maxPowDiv n = Nat.maxPowDiv.go 0 p n
Instances For
@[irreducible]
Tail recursive function which returns the largest k : ℕ such that p ^ k ∣ n for any p : ℕ.
padicValNat_eq_maxPowDiv allows the code generator to use this definition for padicValNat