WithZero #
In this file we provide some basic API lemmas for the WithZero construction and we define
the morphism WithZeroMultInt.toNNReal.
Main Definitions #
WithZeroMultInt.toNNReal: TheMonoidWithZeroHomfromℤᵐ⁰ → ℝ≥0sending0 ↦ 0andx ↦ e^((WithZero.unzero hx).toAdd)whenx ≠ 0, for a nonzeroe : ℝ≥0.
Main Results #
WithZeroMultInt.toNNReal_strictMono: The mapwithZeroMultIntToNNRealis strictly monotone whenever1 < e.
Tags #
WithZero, multiplicative, nnreal
Given a nonzero e : ℝ≥0, this is the map ℤᵐ⁰ → ℝ≥0 sending 0 ↦ 0 and
x ↦ e^(WithZero.unzero hx).toAdd when x ≠ 0 as a MonoidWithZeroHom.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
WithZeroMulInt.toNNReal_pos_apply
{e : NNReal}
(he : e ≠ 0)
{x : WithZero (Multiplicative ℤ)}
(hx : x = 0)
:
theorem
WithZeroMulInt.toNNReal_neg_apply
{e : NNReal}
(he : e ≠ 0)
{x : WithZero (Multiplicative ℤ)}
(hx : x ≠ 0)
:
The map toNNReal is strictly monotone whenever 1 < e.