Embeddings of Fin n #
Fin n is the type whose elements are natural numbers smaller than n.
This file defines embeddings between Fin n and other types,
Main definitions #
Fin.valEmbedding: coercion to natural numbers as anEmbedding;Fin.succEmb:Fin.succas anEmbedding;Fin.castLEEmb h:Fin.castLEas anEmbedding, embedFin nintoFin m,h : n ≤ m;Fin.castAddEmb m:Fin.castAddas anEmbedding, embedFin nintoFin (n+m);Fin.castSuccEmb:Fin.castSuccas anEmbedding, embedFin nintoFin (n+1);Fin.addNatEmb m i:Fin.addNatas anEmbedding, addmonion the right, generalizesFin.succ;Fin.natAddEmb n i:Fin.natAddas anEmbedding, addsnonion the left;
order #
@[simp]
succ and casts into larger Fin types #
@[deprecated Fin.coe_succEmb (since := "2025-04-12")]
Alias of Fin.coe_succEmb.
Fin.castLE as an Embedding, castLEEmb h i embeds i into a larger Fin type.
Equations
- Fin.castLEEmb h = { toFun := Fin.castLE h, inj' := ⋯ }
Instances For
Fin.castAdd as an Embedding, castAddEmb m i embeds i : Fin n in Fin (n+m).
See also Fin.natAddEmb and Fin.addNatEmb.
Equations
Instances For
Fin.natAdd as an Embedding, natAddEmb n i adds n to i "on the left".
Equations
- Fin.natAddEmb n = { toFun := Fin.natAdd n, inj' := ⋯ }
Instances For
Fin.succAbove p as an Embedding.
Equations
- p.succAboveEmb = { toFun := p.succAbove, inj' := ⋯ }
Instances For
@[simp]
Fin.natAdd_castLEEmb as an Embedding from Fin n to Fin m, by appending the former
at the end of the latter.
natAdd_castLEEmb hmn i maps i : Fin m to i + (m - n) : Fin n by adding m - n to i
Equations
- Fin.natAdd_castLEEmb hmn = (Fin.addNatEmb (m - n)).trans (finCongr ⋯).toEmbedding
Instances For
@[simp]