References [Bha23] Sreerupa Bhattacharjee.
A Survey of Büthe's Method for Estimating Prime Counting Functions.
Master's thesis, University of Lethbridge, Lethbridge, Alberta, 2023.
URL: https://opus.uleth.ca/items/b6026465-4a9c-443a-b8e1-f2acd4068991 .[BKL+21] Samuel Broadbent, Habiba Kadiri, Allysa Lumley, Nathan Ng, Kirsten Wilk.
Sharper bounds for the Chebyshev function $\theta(x)$.
Math. Comp. , 90(331):2281–2315, 2021.
doi:10.1090/mcom/3643 , MR:4280302 , URL: https://doi.org/10.1090/mcom/3643 .[But16] Jan Büthe.
Estimating $\pi(x)$ and related functions under partial RH assumptions.
Math. Comp. , 85(301):2483–2498, 2016.
doi:10.1090/mcom/3060 , MR:3511289 , URL: https://doi.org/10.1090/mcom/3060 .[But18] Jan Büthe.
An analytic method for bounding $\psi(x)$.
Math. Comp. , 87(312):1991–2009, 2018.
doi:10.1090/mcom/3264 , MR:3787399 , URL: https://doi.org/10.1090/mcom/3264 .[CL13] Emanuel Carneiro, Friedrich Littmann.
Entire approximations for a class of truncated and odd functions.
J. Fourier Anal. Appl. , 19(5):967–996, 2013.
doi:10.1007/s00041-013-9273-6 , MR:3110588 , URL: https://doi.org/10.1007/s00041-013-9273-6 .[Che99] Yuanyou Cheng.
An explicit upper bound for the Riemann zeta-function near the line $\sigma=1$.
Rocky Mountain J. Math. , 29(1):115–140, 1999.
doi:10.1216/rmjm/1181071682 , MR:1687658 , URL: https://doi.org/10.1216/rmjm/1181071682 .[CH25a] Andrés Chirre, Harald Andrés Helfgott.
Optimal bounds for sums of bounded arithmetic functions.
2025.
arXiv:2511.14736 .[CH25b] Andrés Chirre, Harald Andrés Helfgott.
Optimal bounds for sums of non-negative arithmetic functions.
2025.
arXiv:2512.15709 .[CP85] N. Costa Pereira.
Estimates for the Chebyshev function $\psi(x)-\theta (x)$.
Math. Comp. , 44(169):211–221, 1985.
doi:10.2307/2007805 , MR:771046 , URL: https://doi.org/10.2307/2007805 .[dR24] Juan Arias de Reyna.
On the approximation of the zeta function by Dirichlet polynomials.
2024.
arXiv:2406.16667 .[Dia82] Harold G. Diamond.
Elementary methods in the study of the distribution of prime numbers.
Bull. Amer. Math. Soc. (N.S.) , 7(3):553–589, 1982.
doi:10.1090/S0273-0979-1982-15057-1 , MR:670132 , URL: https://doi.org/10.1090/S0273-0979-1982-15057-1 .[DHA22] Daniele Dona, Harald A. Helfgott, Sebastian Zuniga Alterman.
Explicit $L^2$ bounds for the Riemann $\zeta$ function.
J. Théor. Nombres Bordx. , 34(1):91–133, 2022.
doi:10.5802/jtnb.1194 , Zbl:1495.11100 .[Dud16] Adrian W. Dudek.
An explicit result for primes between cubes.
Funct. Approx. Comment. Math. , 55(2):177–197, 2016.
doi:10.7169/facm/2016.55.2.3 , MR:3584567 , URL: https://doi.org/10.7169/facm/2016.55.2.3 .[DP15] Adrian W. Dudek, David J. Platt.
On solving a curious inequality of Ramanujan.
Exp. Math. , 24(3):289–294, 2015.
doi:10.1080/10586458.2014.990118 , MR:3359216 , URL: https://doi.org/10.1080/10586458.2014.990118 .[Dus18] Pierre Dusart.
Explicit estimates of some functions over primes.
Ramanujan J. , 45(1):227–251, 2018.
doi:10.1007/s11139-016-9839-4 , MR:3745073 , URL: https://doi.org/10.1007/s11139-016-9839-4 .[FKS23a] Andrew Fiori, Habiba Kadiri, Joshua Swidinsky.
Sharper bounds for the Chebyshev function $\psi(x)$.
J. Math. Anal. Appl. , 527(2):Paper No. 127426, 28, 2023.
doi:10.1016/j.jmaa.2023.127426 , MR:4598939 , URL: https://doi.org/10.1016/j.jmaa.2023.127426 .[FKS23b] Andrew Fiori, Habiba Kadiri, Joshua Swidinsky.
Sharper bounds for the error term in the prime number theorem.
Res. Number Theory , 9(3):Paper No. 63, 19, 2023.
doi:10.1007/s40993-023-00454-w , MR:4629508 , URL: https://doi.org/10.1007/s40993-023-00454-w .[HL21] G. H. Hardy, J. E. Littlewood.
The zeros of Riemann's zeta-function on the critical line.
Math. Z. , 10:283–317, 1921.
doi:10.1007/BF01211614 , URL: https://eudml.org/doc/167645 .[Hel13] H. A. Helfgott.
The ternary Goldbach conjecture is true.
2013.
arXiv:1312.7748 .[Kad13] Habiba Kadiri.
A zero density result for the Riemann zeta function.
Acta Arith. , 160(2):185–200, 2013.
doi:10.4064/aa160-2-6 , MR:3105334 , URL: https://doi.org/10.4064/aa160-2-6 .[KL14] Habiba Kadiri, Allysa Lumley.
Short effective intervals containing primes.
Integers , 14:Paper No. A61, 18, 2014.
MR:3274183 .[KLN18] Habiba Kadiri, Allysa Lumley, Nathan Ng.
Explicit zero density for the Riemann zeta function.
J. Math. Anal. Appl. , 465(1):22–46, 2018.
doi:10.1016/j.jmaa.2018.04.071 , MR:3806689 , URL: https://doi.org/10.1016/j.jmaa.2018.04.071 .[MV07] Hugh L. Montgomery, Robert C. Vaughan.
Multiplicative number theory. I. Classical theory .
Volume 97 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2007.
ISBN 978-0-521-84903-6; 0-521-84903-9.
MR:2378655 .[OeSHP14] Tomás Oliveira e Silva, Siegfried Herzog, Silvio Pardi.
Empirical verification of the even Goldbach conjecture and computation of prime gaps up to $4\cdot 10^{18}$.
Math. Comp. , 83(288):2033–2060, 2014.
doi:10.1090/S0025-5718-2013-02787-1 , MR:3194140 , URL: https://doi.org/10.1090/S0025-5718-2013-02787-1 .[Pin80] J. Pintz.
On the remainder term of the prime number formula. II. On a theorem of Ingham.
Acta Arith. , 37:209–220, 1980.
doi:10.4064/aa-37-1-209-220 , MR:598876 , URL: https://doi.org/10.4064/aa-37-1-209-220 .[PT21] David J. Platt, Timothy S. Trudgian.
The error term in the prime number theorem.
Math. Comp. , 90(328):871–881, 2021.
doi:10.1090/mcom/3583 , MR:4194165 , URL: https://doi.org/10.1090/mcom/3583 .[RS03] Olivier Ramaré, Yannick Saouter.
Short effective intervals containing primes.
J. Number Theory , 98(1):10–33, 2003.
doi:10.1016/S0022-314X(02)00029-X , MR:1950435 , URL: https://doi.org/10.1016/S0022-314X(02)00029-X .[Ric01] Jörg Richstein.
Verifying the Goldbach conjecture up to $4\cdot 10^{14}$.
Math. Comp. , 70(236):1745–1749, 2001.
doi:10.1090/S0025-5718-00-01290-4 , MR:1836932 , URL: https://doi.org/10.1090/S0025-5718-00-01290-4 .[RS62] J. Barkley Rosser, Lowell Schoenfeld.
Approximate formulas for some functions of prime numbers.
Illinois J. Math. , 6:64–94, 1962.
MR:137689 , URL: http://projecteuclid.org/euclid.ijm/1255631807 .[RS75] J. Barkley Rosser, Lowell Schoenfeld.
Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$.
Math. Comp. , 29:243–269, 1975.
doi:10.2307/2005479 , MR:457373 , URL: https://doi.org/10.2307/2005479 .[RYS69] J. Barkley Rosser, J. M. Yohe, Lowell Schoenfeld.
Rigorous computation and the zeros of the Riemann zeta-function. (With discussion).
In Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968), Vol. 1: Mathematics, Software , pages 70–76.
North-Holland, Amsterdam, 1969.
MR:258245 .[STD15] Yannick Saouter, Timothy Trudgian, Patrick Demichel.
A still sharper region where $\pi(x)-{\rm li}(x)$ is positive.
Math. Comp. , 84(295):2433–2446, 2015.
doi:10.1090/S0025-5718-2015-02930-5 , MR:3356033 , URL: https://doi.org/10.1090/S0025-5718-2015-02930-5 .[Sch76] Lowell Schoenfeld.
Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II.
Math. Comp. , 30(134):337–360, 1976.
doi:10.2307/2005976 , MR:457374 , URL: https://doi.org/10.2307/2005976 .[Sim20] Aleksander Simoni\v c.
Explicit zero density estimate for the Riemann zeta-function near the critical line.
J. Math. Anal. Appl. , 491(1):124303, 41, 2020.
doi:10.1016/j.jmaa.2020.124303 , MR:4114203 , URL: https://doi.org/10.1016/j.jmaa.2020.124303 .[Ten15] Gérald Tenenbaum.
Introduction to analytic and probabilistic number theory. Transl. from the 3rd French edition by Patrick D. F. Ion .
3rd expanded ed.
Volume 163 of Grad. Stud. Math.
Providence, RI: American Mathematical Society (AMS), 2015.
ISBN 978-0-8218-9854-3.
Zbl:1336.11001 .[Tit86] E. C. Titchmarsh.
The theory of the Riemann zeta-function .
Second edition.
The Clarendon Press, Oxford University Press, New York, 1986.
ISBN 0-19-853369-1.
Edited and with a preface by D. R. Heath-Brown.
MR:882550 .