Rational Endpoint Intervals #
This file defines IntervalRat, a concrete interval type with rational endpoints
suitable for computation. We prove the Fundamental Theorem of Interval Arithmetic
(FTIA) for each operation.
Module Structure #
IntervalRat.Basic- Core types:IntervalRat, membership, basic operationsIntervalRat.Transcendental- Noncomputable transcendental bounds (exp, log, sqrt, atanh)IntervalRat.Taylor- Computable Taylor series evaluators
Main definitions #
LeanCert.Core.IntervalRat- Intervals with rational endpointsLeanCert.Core.IntervalRat.toSet- Semantic interpretation as a subset of ℝ- Operations:
add,neg,sub,mul,inv,div - Computable:
expComputable,sinComputable,cosComputable
Main theorems #
mem_add- FTIA for additionmem_neg- FTIA for negationmem_sub- FTIA for subtractionmem_mul- FTIA for multiplicationmem_expComputable,mem_sinComputable,mem_cosComputable- FTIA for computable functions
Design notes #
All operations maintain the invariant lo ≤ hi. Domain restrictions for partial
operations (like inv) are encoded via separate types or explicit hypotheses.