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Chapter 1
The project

The project github page is https://github.com/AlexKontorovich/PrimeNumberTheoremAnd.

The project docs page is https://alexkontorovich.github. io/PrimeNumberTheoremAnd/
docs.

The first main goal is to prove the Prime Number Theorem in Lean. (This remains
one of the outstanding problems on Wiedijk’s list of 100 theorems to formalize.) Note that
PNT has been formalized before, first by Avigad et al in Isabelle, https://arxiv.org/
abs/cs/0509025 following the Selberg / Erdos method, then by Harrison in HOL Light
https://www.cl.cam.ac.uk/$\sim$jrh13/papers/mikefest.html via Newman’s proof.
Carniero gave another formalization in Metamath of the Selberg / Erdos method: https:
//arxiv.org/abs/1608.02029, and Eberl-Paulson gave a formalization of Newman’s proof
in Isabelle: https://www.isa-afp.org/entries/Prime_Number_Theorem.html

Continuations of this project aim to extend this work to primes in progressions (Dirich-
let’s theorem), Chebotarev’s density theorem, etc etc.

There are (at least) three approaches to PNT that we may want to pursue simultaneously.
The quickest, at this stage, is likely to follow the “Euler Products” project by Michael Stoll,
which has a proof of PNT missing only the Wiener-Ikehara Tauberian theorem.

The second develops some complex analysis (residue calculus on rectangles, argument
principle, Mellin transforms), to pull contours and derive a PNT with an error term which
is stronger than any power of log savings.

The third approach, which will be the most general of the three, is to: (1) develop
the residue calculus et al, as above, (2) add the Hadamard factorization theorem, (3) use
it to prove the zero-free region for zeta via Hoffstein-Lockhart+Goldfeld-Hoffstein-Liemann
(which generalizes to higher degree L-functions), and (4) use this to prove the prime number
theorem with exp-root-log savings.

A word about the expected “rate-limiting-steps” in each of the approaches.

(*) In approach (1), I think it will be the fact that the Fourier transform is a bijection on
the Schwartz class. There is a recent PR (https://github.com/leanprover-community/
mathlib4/pull/9773) with David Loeffler and Heather Macbeth making the first steps in
that direction, just computing the (Frechet) derivative of the Fourier transform. One will
need to iterate on that to get arbitrary derivatives, to conclude that the transform of a
Schwartz function is Schwartz. Then to get the bijection, we need an inversion formula. We
can derive Fourier inversion *from* Mellin inversion! So it seems that the most important
thing to start is Perron’s formula.

(*) In approach (2), there are two rate-limiting-steps, neither too serious (in my esti-
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mation). The first is how to handle meromorphic functions on rectangles. Perhaps in this
project, it should not be done in any generality, but on a case by case basis. There are
two simple poles whose residues need to be computed in the proof of the Perron formula,
and one simple pole in the log-derivative of zeta, nothing too complicated, and maybe we
shouldn’t get bogged down in the general case. The other is the fact that the e-smoothed
Chebyshev function differs from the unsmoothed by €X (and not eX log X, as follows from
a trivial bound). This needs a Brun-Titchmarsh type theorem, perhaps can be done even
more easily in this case with a Selberg sieve, on which there is (partial?) progress in Mathlib.

(*) In approach (3), it’s obviously the Hadamard factorization, which needs quite a lot of
nontrivial mathematics. (But after that, the math is not hard, on top of things in approach
(2) — and if we're getting the strong error term, we can afford to lose log X in the Chebyshev
discussion above...).



Chapter 2

First approach: Wiener-lkehara
Tauberian theorem

2.1 A Fourier-analytic proof of the Wiener-Ikehara the-
orem

The Fourier transform of an absolutely integrable function ¢ : R — C is defined by the
formula
o) = [ ety dr
R

where e(6) := 2™,

Let f: N — C be an arithmetic function such that Zn 1 na)l < oo for all ¢ > 1. Then
the Dirichlet series -

_ Z f(n)
n

n=1

is absolutely convergent for o > 1.

Lemma 2.1.1 (first-fourier). If ¢ : R — C is integrable and = > 0, then for any o > 1

féf)&(%mgg) - /F(a+it)w(t);z:” dt.
- R

Proof. By the definition of the Fourier transform, the left-hand side expands as

1 n
——tlog —) dt
2T ng)

while the right-hand side expands as

/Z n0'+lt Zt dt.

nee f(n) | f(n)
n n, f(n it
v l/f(t)@(*%tlog 5) = ng+it¢(t)x
the claim then follows from Fubini’s theorem. O



Lemma 2.1.2 (second-fourier). If ¢ : R — C is continuous and compactly supported and
x > 0, then for any ¢ > 1

(o]
- 1 ,
—u(o—1) i du = 21 it dt.
/ D) du=eo1 [ (e
Proof. The left-hand side expands as

fj;gx &e’“w’l)?ﬁ(t)e(—%‘r) dt du
? = Z071 ..ER ﬁw(t)xlt dt

so by Fubini’s theorem it suffices to verify the identity

oo tu oo )
/ e—u(a—l)e(_i) du :/ e(zt—a+1)u du
—logx 2m —logx

— 1 (it—o+1)u
it—o+1 —logx
— po—1 1 it
o+it—1

O

Now let A € C, and suppose that there is a continuous function G(s) defined on Res >
1 such that G(s) = F(s) — -4 whenever Res > 1. We also make the Chebyshev-type

hypothesis
S )] <= (2.1)

n<x

for all z > 1 (this hypothesis is not strictly necessary, but simplifies the arguments and can
be obtained fairly easily in applications).

Lemma 2.1.3 (Preliminary decay bound I). If ¢ : R — C is absolutely integrable then

[P(u)| < ¥l
for all © € R. where C' is an absolute constant.

Proof. Immediate from the triangle inequality. O

Lemma 2.1.4 (Preliminary decay bound II). If ¢ : R — C is absolutely integrable and of
bounded variation, then

()] < [y /2wl

for all non-zero u € R.

Proof. By Lebesgue—Stiejtes integration by parts we have
minh(u) = 4 e(—tu)dip(t)

and the claim then follows from the triangle inequality. O



Lemma 2.1.5 (Preliminary decay bound III). If ¢ : R — C is absolutely integrable,
absolutely continuous, and 1)’ is of bounded variation, then

[W(u)] < ¢y /(27 |ul)?
for all non-zero u € R.
Proof. Should follow from previous lemma. O

Lemma 2.1.6 (Decay bound, alternate form). If ¢» : R — C is absolutely integrable,
absolutely continuous, and 1’ is of bounded variation, then

)] < ([l + [ |y /(2m)2) /(1 + [uf?)
for all u € R.
Proof. Should follow from previous lemmas. O
Lemma 2.1.7 (Decay bounds). If ¢ : R — C is C? and obeys the bounds
W), [¢" ()] < A/ (1 + [¢?)

for all ¢t € R, then .
[Y(u)| < CA/(1+ Jul?)

for all u € R, where C is an absolute constant.

Proof. From two integration by parts we obtain the identity

(i) = [ @0~ g0 O)el—tu) .

Now apply the triangle inequality and the identity Aq T HQ dt = 7 to obtain the claim with
C=n+1/4r. O

Lemma 2.1.8 (Limiting Fourier identity). If ¢ : R — C is C? and compactly supported
and x > 1, then

Z (” — A/ ) du = /G(l + it (t)x™ dt.
n= n 7T logx R
Proof. By Lemma and Lemma , we know that for any o > 1, we have

>4

n=1

1 o .
2— g) — Axl_”/ g~ulo=1) 1/}( ) du = /G o +it)y(t)x dt.
logx

Now take limits as ¢ — 1 using dominated convergence together with (@) and Lemma
to obtain the result. O

Corollary 2.1.1 (Corollary of limiting identity). With the hypotheses as above, we have

f(n T
Z log A[OO (5 ) du+o(1)

as r — 0oQ.



Proof. Immediate from the Riemann-Lebesgue lemma, and also noting that f log @ 1/1( 50 ) du =

o(1). O

Lemma 2.1.9 (Smooth Urysohn lemma). If I is a closed interval contained in an open
interval J, then there exists a smooth function ¥ : R — R with 1, < ¥ <1;.

Proof. A standard analysis lemma, which can be proven by convolving 1, with a smooth
approximation to the identity for some interval K between I and J. Note that we have
“SmoothBumpFunction”s on smooth manifolds in Mathlib, so this shouldn’t be too hard...

O

Lemma 2.1.10 (Limiting identity for Schwartz functions). The previous corollary also
holds for functions 1) that are assumed to be in the Schwartz class, as opposed to being C?
and compactly supported.

Proof. For any R > 1, one can use a smooth cutoff function (provided by Lemma to
write ¢ = Y_p + V., where Y_p is C? (in fact smooth) and compactly supported (on
[—R, R]), and 9. p obeys bounds of the form

[ r @], WL (O] < BT/ (14 ]t?)

where the implied constants depend on 1. By Lemma we then have
Uop(u) < R7H/(1+ [uf?).

Using this and (@) one can show that

ig‘q[} —log A/ ¢>R )du<<R1

=1

3

with implied constants also depending on A), while from Lemma one has
g
o0
f(n) ~
ST n(mton ) = A [ ntze) du ot
n=1

Combining the two estimates and letting R be large, we obtain the claim. O

Lemma 2.1.11 (Bijectivity of Fourier transform). The Fourier transform is a bijection on
the Schwartz class. [Note: only surjectivity is actually used.]

Proof. This is a standard result in Fourier analysis. It can be proved here by appealing to
Mellin inversion, Theorem ??. In particular, given f in the Schwartz class, let £ : R, —
C:z — f(logz) be a function in the “Mellin space”; then the Mellin transform of F' on
the imaginary axis s = it is the Fourier transform of f. The Mellin inversion theorem gives
Fourier inversion. O

Corollary 2.1.2 (Smoothed Wiener-Ikehara). If ¥ : (0,00) — C is smooth and compactly
supported away from the origin, then,

> fmw(?) = Ar [ v dyow

n=1

as r — 0oQ.



Proof. By Lemma , we can write

yU(y) = 1/3(% log y)

for all ¥y > 0 and some Schwartz function . Making this substitution, the claim is then
equivalent after standard manipulations to

an 2i E A/ 1/1 du+o(1)

and the claim follows from Lemma . O
Now we add the hypothesis that f(n) > 0 for all n.

Proposition 2.1.1 (Wiener-Ikehara in an interval). For any closed interval I C (0, +o00),
we have

> ) = Az|I] + of).

n=1

Proof. Use Lemma to bound 1; above and below by smooth compactly supported
functions whose integral is close to the measure of |I|, and use the non-negativity of f. O

Corollary 2.1.3 (Wiener-Ikehara Theorem (1)). We have

Z f(n) = Az + o(z).

n<x

Proof. Apply the preceding proposition with I = [, 1] and then send e to zero (using (Ell)
to control the error). O

2.2 Weak PNT

Theorem 2.2.1 (WeakPNT). We have

ZA =z +o(z).

n<x

Proof. Already done by Stoll, assuming Wiener-lTkehara. O

2.3 Removing the Chebyshev hypothesis

In this section we do *not* assume the bound (@), but instead derive it from the other
hypotheses.

Lemma 2.3.1 (limiting-fourier-variant). If ¢ : R — C is C? and compactly supported with
f and v non-negative, and 0 < x, then

fln) ~ 1 n . ;
Z m w 5o A/logz o du—AG(l—i—zt)z/J(t)mtdt.



Proof. Repeat the proof of Lemma 7 but use monotone convergence instead of dom-
inated convergence. (The proof should be simpler, as one no longer needs to establish
domination for the sum.) O

Corollary 2.3.1 (crude-upper-bound). If 1 : R — C is C? and compactly supported with
f and % non-negative, then there exists a constant B such that

= f(n) ~, 1 n
\T;Tﬂ’(%log;”SB

for all x > 0.

Proof. This readily follows from the previous lemma and the triangle inequality. O

Corollary 2.3.2 (auto-cheby). One has
> f(n)=0(x)

n<x

for all z > 1.

Proof. By applying Corollary for a specific compactly supported function v, one can
obtain a bound of the form 2(1_6)x<n<$ f(n) = O(x) for all x and some absolute constant

¢ (which can be made explicit).

If C'is a sufficiently large constant, the claim |} _ f(n)] < Cz can now be proven
by strong induction on , as the claim for (1 — ¢)z implies the claim for x by the triangle
inequality (and the claim is trivial for z < 1). O

Theorem 2.3.1 (Wiener-Tkehara Theorem (2)). We have
3" fn) = Az + ofa).

n<x

Proof. Use Corollary to remove the Chebyshev hypothesis in Theorem . O

2.4 The prime number theorem in arithmetic progres-
sions

Lemma 2.4.1 (WeakPNT-character). If ¢ > 1 and a is coprime to ¢, and Res > 1, we have

An) _ 1 X
n:n;(q) n a QD(Q) >§;)X( ) L(S7X) ’

Proof. From the Fourier inversion formula on the multiplicative group (Z/qZ)*, we have

1n:a (@) — <)OE]q> Z mX(n)

x ()

On the other hand, from standard facts about L-series we have for each character x that

— ns L(s,x)

Combining these two facts, we obtain the claim. O

An)x(n L' (s,
3 (n)x(n) _ L'(s,x)



Proposition 2.4.1 (WeakPNT-AP-prelim). If ¢ > 1 and a is coprime to ¢, the Dirichlet

series - _ . . @ Aflf) converges for Re(s) > 1 to ﬁ =

+ G(s) where G has a continuous
extension to Re(s) = 1.

Proof. We expand out the left-hand side using Lemma . The contribution of the non-
principal characters y extend continuously to Re(s) = 1 thanks to the non-vanishing of
L(s,x) on this line (which should follow from another component of this project), so it
suffices to show that for the principal character y,, that

L/(87X0) _ 1
L(s,xg) s—1

also extends continuously here. But we already know that

¢(s) 1

C(s) s—1

extends, and from Euler product machinery one has the identity

L'(s,x0) _ ¢'(s) log p
Do)~ ) T 2T

. . . c . logp
Since there are only finitely many primes dividing ¢, and each summand DT extends

continuously, the claim follows. O

Theorem 2.4.1 (WeakPNT-AP). If ¢ > 1 and a is coprime to ¢, we have

Y A(m) = =+ o).

n<z:n=a (q)

Proof. Apply Theorem (or Theorem to avoid checking the Chebyshev condition)
using Proposition R.4.1. O

2.5 The Chebotarev density theorem: the case of cyclo-
tomic extensions

In this section, K is a number field, L = K(u,,) for some natural number m, and G =
Gal(K/L).

The goal here is to prove the Chebotarev density theorem for the case of cyclotomic
extensions.

Lemma 2.5.1 (Dedekind-factor). We have

() =TT L)

X
for RR(s) > 1, where y runs over homomorphisms from G to C* and L is the Artin L-function.

Proof. See Propositions 7.1.16, 7.1.19 of https://www.math.ucla.edu/~sharifi/algnum.
pdf. O

Lemma 2.5.2 (Simple pole). ¢; has a simple pole at s = 1.
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Proof. See Theorem 7.1.12 of https://www.math.ucla.edu/~sharifi/algnum.pdf. O

Lemma 2.5.3 (Dedekind-nonvanishing). For any non-principal character x of Gal(K /L),
L(x, s) does not vanish for R(s) = 1.

Proof. For s = 1, this will follow from Lemmas , . For the rest of the line, one
should be able to adapt the arguments for the Dirichet L-function. O

2.6 The Chebotarev density theorem: the case of abelian
extensions

(Use the arguments in Theorem 7.2.2 of https://www.math.ucla.edu/~sharifi/algnum.
pdf to extend the previous results to abelian extensions (actually just cyclic extensions
would suffice))

2.7 The Chebotarev density theorem: the general case

(Use the arguments in Theorem 7.2.2 of https://www.math.ucla.edu/~sharifi/algnum.
pdf to extend the previous results to arbitrary extensions

Lemma 2.7.1 (PNT for one character). For any non-principal character x of Gal(K/L),

> x(p)log Np = o(x).

Np<z

Proof. This should follow from Lemma and the arguments for the Dirichlet L-function.
(It may be more convenient to work with a von Mangoldt type function instead of log Np).
O

10
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Chapter 3

Second approach

3.1 Residue calculus on rectangles

This files gathers definitions and basic properties about rectangles.
The border of a rectangle is the union of its four sides.

Definition 3.1.1 (RectangleBorder). A Rectangle’s border, given corners z and w is the
union of the four sides.

Definition 3.1.2 (RectangleIntegral). A RectangleIntegral of a function f is one over a
rectangle determined by z and w in C. We will sometimes denote it by j; “r (There is also
a primed version, which is 1/(274) times the original.)

Definition 3.1.3 (UpperUlntegral). An UpperUlntegral of a function f comes from o+ ico
down to o + 1T, over to ¢’ + 47", and back up to o’ + t00.

Definition 3.1.4 (LowerUlntegral). A LowerUlntegral of a function f comes from o — ico
up to 0 — 7', over to o’ — ¢TI, and back down to ¢’ — i00.

It is very convenient to define integrals along vertical lines in the complex plane, as
follows.

Definition 3.1.5 (Verticallntegral). Let f be a function from C to C, and let ¢ be a real

number. Then we define i
/ f(s)ds :/ f(s)ds.
(o) o—i00

We also have a version with a factor of 1/(2mi).

Lemma 3.1.1 (DiffVertRect-eq-UpperLowerUs). The difference of two vertical integrals
and a rectangle is the difference of an upper and a lower U integrals.

Proof. Follows directly from the definitions. O

Theorem 3.1.1 (existsDifferentiableOn-of-bddAbove). If f is differentiable on a set s ex-
cept at ¢ € s, and f is bounded above on s\ {c}, then there exists a differentiable function
g on s such that f and g agree on s\ {c}.

Proof. This is the Riemann Removable Singularity Theorem, slightly rephrased from what’s
in Mathlib. (We don’t care what the function g is, just that it’s holomorphic.) O

11



Theorem 3.1.2 (HolomorphicOn.vanishesOnRectangle). If f is holomorphic on a rectangle
z and w, then the integral of f over the rectangle with corners z and w is 0.

Proof. This is in a Mathlib PR. O

The next lemma allows to zoom a big rectangle down to a small square, centered at a
pole.

Lemma 3.1.2 (RectanglePullToNhdOfPole). If f is holomorphic on a rectangle z and w
except at a point p, then the integral of f over the rectangle with corners z and w is the
same as the integral of f over a small square centered at p.

Proof. Chop the big rectangle with two vertical cuts and two horizontal cuts into smaller
rectangles, the middle one being the desired square. The integral over each of the outer
rectangles vanishes, since f is holomorphic there. (The constant ¢ being “small enough”
here just means that the inner square is strictly contained in the big rectangle.) O

Lemma 3.1.3 (ResidueTheoremAtOrigin). The rectangle (square) integral of f(s) = 1/s
with corners —1 — ¢ and 1 + ¢ is equal to 2.

Proof. This is a special case of the more general result above. O

Lemma 3.1.4 (ResidueTheoremOnRectangleWithSimplePole). Suppose that f is a holo-
morphic function on a rectangle, except for a simple pole at p. By the latter, we mean that
there is a function g holomorphic on the rectangle such that, f = g + A/(s — p) for some
A € C. Then the integral of f over the rectangle is A.

Proof. Replace f with g+ A/(s — p) in the integral. The integral of g vanishes by Lemma
. To evaluate the integral of 1/(s — p), pull everything to a square about the origin
using Lemma B.1.2, and rescale by ¢; what remains is handled by Lemma . O

3.2 Perron Formula

In this section, we prove the Perron formula, which plays a key role in our proof of Mellin
inversion.
The following is preparatory material used in the proof of the Perron formula, see Lemma

Lemma 3.2.1 (zeroTendstoDiff). If the limit of 0 is Ly — Lo, then L; = L.
Proof. Obvious. O

Lemma 3.2.2 (RectangleIntegral-tendsTo-Verticallntegral). Let 0,0’ € R, and f: C — C
such that the vertical integrals f<a> f(s)ds and f(a,) f(s)ds exist and the horizontal integral

f(; f(z + yi)dx vanishes as y — +o00. Then the limit of rectangle integrals

/
o

+iT
lim f(s)ds = f(s)ds— | f(s)ds.
N

T—o00 .
o—1

Proof. Almost by definition. O

12



Lemma 3.2.3 (RectangleIntegral-tendsTo-UpperU). Let o,6" € R, and f : C — C such
that the vertical integrals f(a) f(s)ds and f(a,) f(s)ds exist and the horizontal integral f(; flx+

yi)dx vanishes as y — +o0o0. Then the limit of rectangle integrals
o' +iU
/ f(s)ds
o+iT
as U — oo is the “UpperUlntegral” of f.
Proof. Almost by definition. O

Lemma 3.2.4 (RectangleIntegral-tendsTo-LowerU). Let o,0” € R, and f : C — C such that
the vertical integrals j(’a) f(s)ds and j(’g,) f(s)ds exist and the horizontal integral f<Z> flz+

yi)dx vanishes as y — —oo. Then the limit of rectangle integrals

/U _UT f(s)ds

as U — oo is the “LowerUlntegral” of f.
Proof. Almost by definition. O
TODO : Move to general section

Lemma 3.2.5 (limitOfConstant). Let a : R — C be a function, and let ¢ > 0 be a real
number. Suppose that, for all o,0” > 0, we have a(c’) = a(0), and that lim,_, _a(c) = 0.
Then a(o) = 0.

Proof. O

Lemma 3.2.6 (limitOfConstantLeft). Let a : R — C be a function, and let ¢ < —3/2 be a
real number. Suppose that, for all o,0" > 0, we have a(0”) = a(0), and that lim,_, _ a(o) =
0. Then a(o) = 0.

Proof. O

Lemma 3.2.7 (tendsto-rpow-atTop-nhds-zero-of-norm-lt-one). Let z > 0 and # < 1. Then

lim z% = 0.
o—00

Proof. Standard. O

Lemma 3.2.8 (tendsto-rpow-atTop-nhds-zero-of-norm-gt-one). Let z > 1. Then

lim z? =0.
o——00

Proof. Standard. O

Lemma 3.2.9 (isHolomorphicOn). Let z > 0. Then the function f(s) = z°/(s(s+ 1)) is
holomorphic on the half-plane {s € C : R(s) > 0}.

Proof. O

13



Lemma 3.2.10 (integralPosAux). The integral

/ . at
e [+ 2)(2 + )72

is positive (and hence convergent - since a divergent integral is zero in Lean, by definition).

Proof.

Lemma 3.2.11 (vertIntBound). Let > 0 and ¢ > 1. Then

xS
—d
[ﬂ s(s+1) 3

Proof. Triangle inequality and pointwise estimate.

1
< z° dt.
=7 /R|<1+t2><2+t2>|1/2

Lemma 3.2.12 (vertIntBoundLeft). Let z > 1 and o < —3/2. Then

xS
—d
4) s(s+1) §

Proof. Triangle inequality and pointwise estimate.

1
< 20 dt.
=7 4|<1/4+t2><2+t2>|1/2

Lemma 3.2.13 (isIntegrable). Let z > 0 and o € R. Then

l.aJrit
/ | g
e (0 +it)(14 0 +it)
is integrable.
Proof.

Lemma 3.2.14 (tendsto-zero-Lower). Let 2 > 0 and 0’,0” € R. Then

”

o anrit
/ - —do
L (o4it)(1+ o0 +it)

goes to 0 as t — —oo0.

Proof. The numerator is bounded and the denominator tends to infinity.

Lemma 3.2.15 (tendsto-zero-Upper). Let 2 > 0 and 0’,0” € R. Then

”

g xo+it
/ - —do
(o +it)(1+ o +it)

goes to 0 as t — oo.

Proof. The numerator is bounded and the denominator tends to infinity.

We are ready for the first case of the Perron formula, namely when = < 1:

Lemma 3.2.16 (formulaLtOne). For > 0, 0 > 0, and = < 1, we have

1 s

— [ ——=ds=0.
27 Jyy s(s +1)

14
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Proof. O

The second case is when x > 1. Here are some auxiliary lemmata for the second case.
TODO: Move to more general section

Lemma 3.2.17 (keyldentity). Let 2 € R and s # 0, —1. Then

.Z'U

s(1+s) s 1+s

Proof. By ring. O

Lemma 3.2.18 (diffBddAtZero). Let > 0. Then for 0 < ¢ < 1/2, we have that the
function s )
x

H —
s(s+1) s

is bounded above on the rectangle with corners at —c — i x ¢ and ¢ + i * ¢ (except at s = 0).

Proof. Applying Lemma B.2.17, the function s - 2% /s(s+1)—1/s = 2°/s—a"/s—x®/(1+3).
The last term is bounded for s away from —1. The first two terms are the difference quotient
of the function s — z*® at 0; since it’s differentiable, the difference remains bounded as
s — 0. O

Lemma 3.2.19 (diffBddAtNegOne). Let z > 0. Then for 0 < ¢ < 1/2, we have that the

function
s -1

x —x

H
s(s+1) s+1

is bounded above on the rectangle with corners at —1 —c¢ —i* ¢ and —1 + ¢ + i % ¢ (except
at s = —1).

Proof. Applying Lemma , the function s = 2°/s(s+1)—a 7' /(s+1) = 2% /s—a° /(s +
1) — (—z71)/(s + 1). The first term is bounded for s away from 0. The last two terms are
the difference quotient of the function s — x® at —1; since it’s differentiable, the difference
remains bounded as s — —1. O

Lemma 3.2.20 (residueAtZero). Let x > 0. Then for all sufficiently small ¢ > 0, we have
that

1 ctixc s
— T gs=1
270 ) e S(s+1)
Proof. O
Lemma 3.2.21 (residueAtNegOne). Let # > 0. Then for all sufficiently small ¢ > 0, we
have that vt
1 ctikxe— s 1
1 2 g1
270 ) o jeeq S(s+1) T
Proof. Compute the integral. O
Lemma 3.2.22 (residuePulll). For z > 1 (of course x > 0 would suffice) and ¢ > 0, we
have ) ) )
x® x®
— —ds=1+— —ds.
27 Jiyy s(s +1) 20 Ji_yjg) S(s+1)

15



Proof. We pull to a square with corners at —c —i*c and c+i*c for ¢ > 0 sufficiently small.
By Lemma B (J, the integral over this square is equal to 1. O

Lemma 3.2.23 (residuePull2). For z > 1, we have

1 s 1 s
— L ds= —1/z+ — — s
270 J_y gy s(s +1) 27 J_3/9) (s +1)
Proof. Pull contour from (—1/2) to (—3/2). O

Lemma 3.2.24 (contourPull3). For > 1 and ¢ < —3/2, we have
1 x® 1 x®
— ——ds=— | —=ds
27 J_g9) (s +1) 27 Jipy S(s 4+ 1)
Proof. Pull contour from (—3/2) to (o). O
Lemma 3.2.25 (formulaGtOne). For > 1 and ¢ > 0, we have

1 s

— —ds=1—1/x.
21 Jipy 5(s +1) /=
Proof. O

The two together give the Perron formula. (Which doesn’t need to be a separate lemma.)
For x > 0 and ¢ > 0, we have

1 x® 1—1 ifax>1
— | = ds= = .
2mi Ji,y s(s +1) 0 ife<l1

3.3 Mellin transforms

Lemma 3.3.1 (Partiallntegration). Let f, g be once differentiable functions from R. 4 to C
so that f¢g’ and f’g are both integrable, and f - g(x) — 0 as  — 07, 00. Then

/ " o) () = / " P @),

Proof. Partial integration. O

In this section, we define the Mellin transform (already in Mathlib, thanks to David
Loeffler), prove its inversion formula, and derive a number of important properties of some
special functions and bumpfunctions.

Def: (Already in Mathlib) Let f be a function from R., to C. We define the Mellin
transform of f to be the function M (f) from C to C defined by

M(f)(s) = / fa)z>da.

[Note: My preferred way to think about this is that we are integrating over the multiplica-
tive group R., multiplying by a (not necessarily unitary!) character |- |, and integrating
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with respect to the invariant Haar measure da/x. This is very useful in the kinds of calcula-
tions carried out below. But may be more difficult to formalize as things now stand. So we
might have clunkier calculations, which “magically” turn out just right - of course they’re
explained by the aforementioned structure...]

Finally, we need Mellin Convolutions and properties thereof.

Definition 3.3.1 (MellinConvolution). Let f and g be functions from R, to C. Then we
define the Mellin convolution of f and g to be the function f * g from R_; to C defined by

(f*g)(x / fly a?/y

Let us start with a simple property of the Mellin convolution.

Lemma 3.3.2 (MellinConvolutionSymmetric). Let f and g be functions from R_, to R or
C, for x # 0,

Proof. By Definition ,

(fxg)(z) = (g% f)(z).

(f % g)(z) = / f<y>g<x/y>%

in which we change variables to z = z/y:

(f*g)(a / f@/2)9()Z = (g% f)(@).

The Mellin transform of a convolution is the product of the Mellin transforms.

Theorem 3.3.1 (MellinConvolutionTransform). Let f and g be functions from R.; to C

such that
g(x/y) 251

(z,y) = f(y) "

(3.1)
is absolutely integrable on [0, 00)2. Then

M(fxg)(s) = M(f)(s)M(g)(s).
Proof. By Definitions ?? and

M(f*g><s>=/0/0 <><x/y>sl%dx

By (@) and Fubini’s theorem,

M(f*g)(s /Oo/ooof )9(x/y) 51dxdyy

in which we change variables from z to z = x/y:

— [ [ twg@s sy
0 0

17



which, by Definition 77, is

M(f *g)(s) = M(f)(s)M(g)(s).
O

The v function has Mellin transform M (v)(s) which is entire and decays (at least) like

1/|s|.
[Of course it decays faster than any power of |s|, but it turns out that we will just need
one power.]

Theorem 3.3.2 (MellinOfPsi). The Mellin transform of v is

=0 (L),

5]
as |s| = oo with o7 <fR(s) < 2.

Proof. Integrate by parts:

1 2
< = V' (x)]|2R) d.
sl 1/2
Since PR(s) is bounded, the right-hand side is bounded by a constant times 1/|s|. O

We can make a delta spike out of this bumpfunction, as follows.

Definition 3.3.2 (DeltaSpike). Let v be a bumpfunction supported in [1/2,2]. Then for
any € > 0, we define the delta spike v, to be the function from R_, to C defined by

This spike still has mass one:

Lemma 3.3.3 (DeltaSpikeMass). For any € > 0, we have

/ ye(m)d—x =1.
b x

Proof. Substitute y = /¢, and use the fact that v has mass one, and that dz/z is Haar
measure. O

The Mellin transform of the delta spike is easy to compute.

Theorem 3.3.3 (MellinOfDeltaSpike). For any e > 0, the Mellin transform of v, is
M(v)(s) = M(v) (es) .
Proof. Substitute y = z'/¢, use Haar measure; direct calculation. O

In particular, for s = 1, we have that the Mellin transform of v, is 1 4+ O(e).

18



Corollary 3.3.1 (MellinOfDeltaSpikeAt1l). For any € > 0, we have

Proof. This is immediate from the above theorem. O

Lemma 3.3.4 (MellinOfDeltaSpikeAtl-asymp). As e — 0, we have
M(v)(1) =1+ Oe).

Proof. By Lemma ,

which by Definition ?7? is
o0
M(v)(e) = / v(z)xtdz.
0
Since v(x)x¢! is integrable (because v is continuous and compactly supported),

M(v)(e) — /OOO V(x)d—x = ‘[X) v(z)(z¢t — 7 )da.

T

By Taylor’s theorem,

S0, since v is absolutely integrable,

> dx
M)~ [ v@) =0
b x
We conclude the proof using Theorem . O

Let 1(g 1) be the function from R_, to C defined by

1 ifr<l1
1 - =4
0.1)(7) {o ifo>1

This has Mellin transform: [Note: this already exists in mathlib]
Theorem 3.3.4 (MellinOf1). The Mellin transform of 1, y is

1
M(l(o,u)(s) -
Proof. This is a straightforward calculation. O

What will be essential for us is properties of the smooth version of 1, ;), obtained as the
Mellin convolution of 1 ;) with v,.

Definition 3.3.3 (Smooth1). Let e > 0. Then we define the smooth function 1, from R,
to C by

16 = 1(0,1] * V.
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Proof. Let ¢ :=2¢ > 1, in terms of which we wish to prove
—1 < clogec—c.

Letting f(z) := xlogx — x, we can rewrite this as f(1) < f(c). Since
d f(x)=logz >0
—J\xr) = x
dr g )

f is monotone increasing on [1, co), and we are done. O
In particular, we have the following two properties.

Lemma 3.3.5 (SmoothlProperties-below). Fix € > 0. There is an absolute constant ¢ > 0
so that: If 0 < z < (1 — ce), then
1(x)=1.

Proof. Opening the definition, we have that the Mellin convolution of 1, ;) with v, is
= dy [ dy
LoyWve(e/y)—= = | velz/y)—=.
0 Y 0 Y

The support of v, is contained in [1/2¢,2¢], so it suffices to consider y € [1/2°x,2¢x] for
nonzero contributions. If z < 27¢, then the integral is the same as that over (0, c0):

/01 )2 = /Om )2,

in which we change variables to z = z/y (using = > 0):

[ e = [T,

which is equal to one by Lemma . We then choose

c:=log2,
which satisfies
1—27¢
c>
€
by Lemma ?7, so
1—ce<27¢.

O

Lemma 3.3.6 (SmoothlProperties-above). Fix 0 < ¢ < 1. There is an absolute constant
¢ > 0 so that: if > (1 + ce), then

Proof. Again the Mellin convolution is

20



but now if x > 2¢ then the support of v, is disjoint from the region of integration, and
hence the integral is zero. We choose

c:= 2log2.

By Lemma 77,
1—27¢ JA—=27c 2¢-1

c>2 > 2 = ,
€ € €
S0
1+ ce > 2°.
O
Lemma 3.3.7 (Smooth1Nonneg). If v is nonnegative, then 1_(x) is nonnegative.
Proof. By Definitions b.B.SI, b3]] and |33j
~ & 1 1 dy
L@ = [ Lonwir(e/nh)
0 € Y
and all the factors in the integrand are nonnegative. O

Lemma 3.3.8 (Smoothl1LeOne). If v is nonnegative and has mass one, then 1,(z) < 1,
VY > 0.

Proof. By Definitions B.?).Zi, |33]J and B3ﬂ

dy
Yy

@ = [ toswmem?)

and since 1<071](y) < 1, and all the factors in the integrand are nonnegative,

~

< [ emh?

Y

(because in mathlib the integral of a non-integrable function is 0, for the inequality above
to be true, we must prove that v((x/y)<)/y is integrable; this follows from the computation
below). We then change variables to z = (z/y)*<:

< [ T

z

which by Theorem is 1. O

Combining the above, we have the following three Main Lemmata of this section on the
Mellin transform of 1..

Lemma 3.3.9 (MellinOfSmoothla). Fix € > 0. Then the Mellin transform of i: is

M) = -

(M(v) (es)) -

21



Proof. By Definition ,
M(T)(s) = M(Lg ) v (s)-
We wish to apply Theorem . To do so, we must prove that
(,y) = Lo,y (Wve(/y) [y

is integrable on [0, 00)2. It is actually easier to do this for the convolution: v, * Lip,1]s 8O we
use Lemma : for x # 0,

Liga] * v.(z) =v, * 1(071](@.
Now, for x = 0, both sides of the equation are 0, so the equation also holds for z = 0.
Therefore, _

M(1)(s) = M(ve* 1o 1)(s)-
Now,

zsfl

(x,y) = ve(y)lo(z/y)

has compact support that is bounded away from y = 0 (specifically y € [27¢,2°] and = €
(0,9]), so it is integrable. We can thus apply Theorem and find

M(i:)(s) = M(VE)<S)M(1(O,1])(S>'

By Lemmas and ,

s
O
Lemma 3.3.10 (MellinOfSmooth1b). Given 0 < o, < 05, for any s such that oy < Re(s) <
04, we have
M) =0 (7).
Proof. Use Lemma m and the bound in Lemma . O
Lemma 3.3.11 (MellinOfSmoothlc). At s =1, we have
MT)(1) =1+ 0(e).
Proof. Follows from Lemmas B.3.d, B?)]J and B34| O

Lemma 3.3.12 (SmoothlContinuousAt). Fix a nonnegative, continuously differentiable
function F on R with support in [1/2, 2]. Then for any € > 0, the function z f<0 00) P (x)dx
is continuous at any y > 0.

Proof. Use Lemma ??7 to write T;(x) as an integral over an integral near 1, in particular
avoiding the singularity at 0. The integrand may be bounded by 2¢v,(¢) which is independent
of z and we can use dominated convergence to prove continuity. O

Let v be a bumpfunction.

Theorem 3.3.5 (SmoothExistence). There exists a smooth (once differentiable would be
enough), nonnegative “bumpfunction” v, supported in [1/2,2] with total mass one:

[Tt

Proof. Same idea as Urysohn-type argument. O
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3.4 Zeta Bounds

Already on Mathlib (with a shortened proof):

Theorem 3.4.1 (hasDerivAt-conj-conj). Let f : C — C be a complex differentiable function

at p € C with derivative a. Then the function g(z) = f(Z) is complex differentiable at p
with derivative a.

Proof. We expand the definition of the derivative and compute. O
Submitted to Mathlib:

Theorem 3.4.2 (deriv-conj-conj). Let f: C — C be a function at p € C with derivative a.
Then the derivative of the function g(z) = f(z) at D is a.

Proof. We proceed by case analysis on whether f is differentiable at p. If f is differentiable
at p, then we can apply the previous theorem. If f is not differentiable at p, then neither is
g, and both derivatives have the default value of zero. O

Theorem 3.4.3 (conj-riemannZeta-conj-aux1). Conjugation symmetry of the Riemann zeta

function in the half-plane of convergence. Let s € C with %R(s) > 1. Then ((5) = {(s).

Proof. We expand the definition of the Riemann zeta function as a series and find that the
two sides are equal term by term. O

Theorem 3.4.4 (conj-riemannZeta-conj). Conjugation symmetry of the Riemann zeta func-
tion. Let s € C. Then

¢(5) =¢(s).
Proof. By the previous lemma, the two sides are equal on the half-plane {s € C : RR(s) > 1}.
Then, by analytic continuation, they are equal on the whole complex plane. O

Theorem 3.4.5 (riemannZeta-conj). Conjugation symmetry of the Riemann zeta function.
Let s € C. Then

¢(5) =¢(s).
Proof. This follows as an immediate corollary of Theorem . O

Theorem 3.4.6 (deriv-riemannZeta-conj). Conjugation symmetry of the derivative of the
Riemann zeta function. Let s € C. Then

¢'(5) = ¢'(s).

Proof. We apply the derivative conjugation symmetry to the Riemann zeta function and use
the conjugation symmetry of the Riemann zeta function itself. O

Theorem 3.4.7 (intervallntegral-conj). The conjugation symmetry of the interval integral.
Let f: R — C be a measurable function, and let a,b € R. Then

/abf(x)dx:/abf(a:)dx.

Proof. We unfold the interval integral into an integral over a uloc and use the conjugation
property of integrals. O
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We record here some prelimiaries about the zeta function and general holomorphic func-
tions.

Theorem 3.4.8 (ResidueOfTendsTo). If a function f is holomorphic in a neighborhood of
p and lim,_, (s —p)f(s) = A, then f(s) = Sf‘p + O(1) near p.

Proof. The function (s — p) - f(s) bounded, so by Theorem 7 there is a holomorphic
function, g, say, so that (s — p)f(s) = g(s) in a neighborhood of s = p, and g(p) = A. Now
because g is holomorphic, near s = p, we have g(s) = A+ O(s — p). Then when you divide
by (s —p), you get f(s) = A/(s —p) + O(1). a

Theorem 3.4.9 (riemannZetaResidue). The Riemann zeta function ((s) has a simple pole
at s = 1 with residue 1. In particular, the function ((s)— ﬁ is bounded in a neighborhood
of s =1.

Proof. From riemannZeta_residue_one (in Mathlib), we know that (s—1){(s) goes to 1 as
s — 1. Now apply Theorem . (This can also be done using ¢, below, which is expressed
as 1/(s — 1) plus things that are holomorphic for i(s) > 0...) O

Theorem 3.4.10 (nonZeroOfBddAbove). If a function f has a simple pole at a point p
with residue A # 0, then f is nonzero in a punctured neighborhood of p.

Proof. We know that f(s) = Sfp + O(1) near p, so we can write

A A
)+ =
s—p s—p

59 = (19

The first term is bounded, say by M, and the second term goes to oo as s — p. Therefore,
there exists a neighborhood V of p such that for all s € V' \ {p}, we have f(s) # 0. O

Theorem 3.4.11 (logDerivResidue). If f is holomorphic in a neighborhood of p, and there
is a simple pole at p, then f’/f has a simple pole at p with residue —1:
f's)  —1

f(s)  s—p

Proof. Using Theorem , there is a function g holomorphic near p, for which f(s) =
A/(s —p) + g(s) = h(s)/(s — p). Here h(s) := A+ g(s)(s — p) which is nonzero in a
neighborhood of p (since h goes to A which is nonzero). Then f’(s) = (h'(s)(s — p) —
h(s))/(s —p)?, and we can compute the quotient:

+0(1).

f'(s) W(s)(s—p)—h(s) 1 W (s)
+1/(s—p) = . +1/(s—p) = .
fs) MY (s G TP )
Since h is nonvanishing near p, this remains bounded in a neighborhood of p. O

Theorem 3.4.12 (BddAbove-to-IsBigO). If f is bounded above in a punctured neighbor-
hood of p, then f is O(1) in that neighborhood.

Proof. Elementary. O

Let’s also record that if a function f has a simple pole at p with residue A, and g is
holomorphic near p, then the residue of f-gis A - g(p).
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Theorem 3.4.13 (ResidueMult). If f has a simple pole at p with residue A, and g is
holomorphic near p, then the residue of f - g at p is A - g(p). That is, we assume that

A
(s) = = +0(1)

near p, and that g is holomorphic near p. Then

A-

1) 9(9) = 22 1 0q),
Proof. Elementary calculation.
Axg(p) _ Axg(s) Axg(s)—Axg(p)
£ 9(6) = ) ((f(5) ) - 100N ) o (A2 2o

P
fact that g is holomorphic near p. The second term is A times the log derivative of g at p,
which is bounded by the assumption that g is holomorphic. O

The first term is g(s)(f(s) — Ap), which is bounded near p by the assumption on f and the

As a corollary, the log derivative of the Riemann zeta function has a simple pole at s = 1:
Theorem 3.4.14 (riemannZetaLogDerivResidue). The log derivative of the Riemann zeta

function ((s) has a simple pole at s = 1 with residue —1: 744/({:)) — ﬁ =0(1).

Proof. This follows from Theorem and Theorem . O

Definition 3.4.1 (riemannZeta0). For any natural N > 1, we define

G(N,s) = Z — T + dx

_ s+1
SN 1—s 2 N x

1 —NI=s —N5+S/°° lz] +1/2—2

Lemma 3.4.1 (sum-eg-int-deriv). Let a < b, and let ¢ be continuously differentiable on
[a,b]. Then

22,0 [gﬁ(m) det (6] + 5 —b) 90)—(la] + 5 —0) ¢<a>/ab (L) +5 =) ¢'(x)do.

Proof. Specialize Abel summation from Mathlib to the trivial arithmetic function and then
manipulate integrals. O

Lemma 3.4.2 (ZetaSum-auxl). Let 0 < a < b be natural numbers and s € C with s # 1
and s # 0. Then

1 bl—s_ 1-s b5 —aq=*5 b 1/2 —
vl L a +s/ le]+1/2—2
n a

— s+1
a<n<b l—s 2 x

Proof. Apply Lemma to the function z — z~%. O

Lemma 3.4.3 (ZetaBnd-auxla). For any 0 < a < b and s € C with o = R(s) > 0,
/b 2] +1/2—x

a7 —b"°
s+l !

g

dac‘ <
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Proof. Apply the triangle inequality

Lx + 1/2—:17
xs+1

* 1
a

and evaluate the integral.

Lemma 3.4.4 (ZetaSum-aux2). Let N be a natural number and s € C, R(s) > 1. Then

+ s+l

1 —Nl=s _N—s o 1/2 —
1 b [l
ns 1—s 2 N

N<n

Proof. Apply Lemma M with a = N and b — oc.

Lemma 3.4.5 (ZetaBnd-aux1b). For any N >1and s=o0+¢l € C, 0 > 0,

N*O’

g

/mm“/?—fﬂda, <
N

s+l

Proof. Apply Lemma m with a = N and b — cc.

Lemma 3.4.6 (ZetaBnd-aux1l). Forany N > 1 and s=0+tI € C, 0 =€ (0,2],2 < [t],

1/2 — N—°
‘ / le]+1/2- dm‘§2t| .
o

$s+1

Proof. Apply Lemma B.4.5 and estimate ls| < [t].

Big-Oh version of Lemma .

Lemma 3.4.7 (ZetaBnd-auxlp). For any N > 1 and s =0 +tI € C, 0 =€ (0,2],2 < [¢],

—0

N
< |t

o] +1/2—2
strl

Proof. Apply Lemma 3.4.5 and estimate |s] < |t].

O

O

Theorem 3.4.15 (HolomorphicOn-riemannZeta0). For any N > 1, the function {y(N,s)

is holomorphic on {s € C|R(s) > 0A s # 1}.

Proof. The function (y(N,s) is a finite sum of entire functions. plus an integral that’s

absolutely convergent on {s € C | 9R(s) > 0A s # 1} by Lemma 3.4.5.

O

Lemma 3.4.8 (isPathConnected-aux). The set {s € C | R(s) > 0 A s # 1} is path-

connected.

Proof. Construct explicit paths from 2 to any point, either a line segment or two joined

ones.

Lemma 3.4.9 (ZetaOEqZeta). For R(s) > 0, s # 1, and for any N,
Proof. Use Lemma m and the Definition .
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Lemma 3.4.10 (ZetaBnd-aux2). Given n <t and o with 1 — A/logt < &, we have that

In=| < nled.

Proof. Use [n™%| =n~7 = e 718" < exp(— (1 — 10‘;) logn) < nled, since n < t. O

Lemma 3.4.11 (ZetaUpperBnd). For any s = o + ¢l € C, 1/2 < ¢ < 2,3 < |t| and any
0 < A < 1 sufficiently small, and 1 — A/log|t| < o, we have

I¢(s)] < logt.
Proof. First replace ((s) by (5(N,s) for N = [|t|]. We estimate:

A

Vsl < 3 el T+ T g
1<n<|t|
e Z e
1<n<|t|

, where we used Lemma and Lemma . The first term is <« log|t|. For the second

term, estimate
|t‘170 < |t|17(17A/10g\t|) _ ‘ﬂA/log\t\ «< 1.

O

Lemma 3.4.12 (DerivUpperBnd-aux7). For any s =c+¢/ € C, 1/2 <0 < 2,3 < |t|, and
any 0 < A < 1 sufficiently small, and 1 — A/log |¢| < o, we have

s~/NOO (ij +%—x> cx—L . (—logx)

Proof. Estimate |s| = |o+tI| by |s| < 2+[t] < 2|¢| (since |¢| > 3). Estimating | [z|+1/2—z|
by 1, and using |x*7!| = 27771, we have

s-/NOO (ij + % —x) cx 7l (—logx)

For the last integral, integrate by parts, getting:

<2-t]- N77/o -log|t].

32-|t\/ 27 - (logx).
N

> 1 1
/ 271 (logz) = =N -log N + — N7
N g g

Now use log N < log|¢| to get the result. O

Lemma 3.4.13 (ZetaDerivUpperBnd). For any s =c+tI € C, 1/2 < 0 < 2,3 < |¢|, there
is an A > 0 so that for 1 — A/logt < o, we have

¢’ (s)] < log” t.

Proof. First replace ((s) by (5(N,s) for N = ||t|]. Differentiating term by term, we get:

, . Ni=s N SlogN N— SlogN lz]+1/2—x >
C(S):—I;Nn 10gn+(1_8)2+ T / e dz—s/N log x
Estimate as before, with an extra factor of log|t|. O
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Lemma 3.4.14 (ZetaNear1BndFilter). As o — 17,

[C(o)] < 1/(0—1).

Proof. Zeta has a simple pole at s = 1. Equivalently, ((s)(s — 1) remains bounded near 1.
Lots of ways to prove this. Probably the easiest one: use the expression for (,(N,s) with
N =1 (the term N'=*/(1 — s) being the only unbounded one). O

Lemma 3.4.15 (ZetaNearlBndExact). There exists a ¢ > 0 such that for all 1 < o <2,

[C(@)] <¢/(o—1).

Proof. Split into two cases, use Lemma for o sufficiently small and continuity on a
compact interval otherwise. O

Lemma 3.4.16 (ZetaLowerBound3). There exists a ¢ > 0 such that for all 1 < ¢ <=2 and
3 < [t],

(0 —1)3/4
(log [¢])M/*

Proof. Combine Lemma ?? with upper bounds for |((¢)| (from Lemma ) and |C(o +
2it)| (from Lemma ) O

c < |¢(o+tI)].

Lemma 3.4.17 (ZetalnvBoundl). For all o > 1,
1/1¢(o +it)| < [¢(o)[**[¢(o + 2it)[/*

Proof. The identity
1< [¢(0)PI¢(o + it)|*[¢(o + 2it)|

for o > 1 is already proved by Michael Stoll in the EulerProducts PNT file. O
Lemma 3.4.18 (ZetalnvBound2). For o0 > 1 (and o < 2),

1/l¢(o +it)] < (o = 1) *(log [¢))1/*,

as [t| = oo.

Proof. Combine Lemma with the bounds in Lemmata 13.4.151 and B.4.1]J. O

Lemma 3.4.19 (Zeta-eqg-int-derivZeta). For any t # 0 (so we don’t pass through the pole),
and o, < 0y,

/02 ¢(o +it)dt = ((og +it) — ((oq +1it).

1

Proof. This is the fundamental theorem of calculus. O

Lemma 3.4.20 (Zeta-diff-Bnd). For any A > 0 sufficiently small, there is a constant C' > 0
so that whenever 1 — A/logt < 0y < 05 < 2 and 3 < [t|, we have that:

[C(o5 +it) — C(oy +it)| < C(log [t])?(o — 0y).

Proof. Use Lemma and estimate trivially using Lemma . O
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Lemma 3.4.21 (ZetalnvBnd). For any A > 0 sufficiently small, there is a constant C' > 0
so that whenever 1 — A/log” |t| <o < 14 A/log” |t| and 3 < ||, we have that:

1/[¢(0 +it)| < Clog” |t].
Proof. Let o be given in the prescribed range, and set o’ := 1 + A/log” |t|. Then
(Clo+it)] = 60" +it)] — [¢lo+it) — Clo” +it)] = Clo” — 134 Tog |t /% — Clog? t](o” — o)

> C A4 log |t|7 — Clog” |t|(24/ 1og” [t]),
where we used Lemma and Lemma . Now by making A sufficiently small (in

particular, something like A = 1/16 should work), we can guarantee that

C
Clo+it)| = 5 (log i),

as desired. O

Annoyingly, it is not immediate from this that ¢ doesn’t vanish there! That’s because
1/0 = 0 in Lean. So we give a second proof of the same fact (refactor this later), with a
lower bound on ¢ instead of upper bound on 1/¢.

Lemma 3.4.22 (ZetaLowerBnd). For any A > 0 sufficiently small, there is a constant
C > 0 so that whenever 1 — A/log” |t < o < 1 and 3 < |¢|, we have that:

C(o +it)| > Clog” [t].
Proof. Follow same argument. O

Now we get a zero free region.

Lemma 3.4.23 (ZetaZeroFree). There is an A > 0 so that for 1 — A/ log” [t| <o <1 and
3 < [tl;
C(o +it) # 0.

Proof. Apply Lemma . O

Lemma 3.4.24 (LogDerivZetaBnd). There is an A > 0 so that for 1 — A/log” |t| < o <
1+ A/log” |t| and 3 < |t],

’

15 (0 + it)] < 10g” ]

¢
Proof. Combine the bound on |¢’| from Lemma with the bound on 1/|¢| from Lemma
3.4.21] O
Theorem 3.4.16 (ZetaNoZerosOnlLine). The zeta function does not vanish on the 1-line.
Proof. This fact is already proved in Stoll’s work. O

Then, since ¢ doesn’t vanish on the 1-line, there is a ¢ < 1 (depending on T'), so that
the box [0, 1] x¢ [T, T] is free of zeros of (.
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Lemma 3.4.25 (ZetaNoZerosInBox). For any T > 0, there is a constant o < 1 so that
Clo" +1it) #0
for all |t| < T and ¢’ > 0.

Proof. Assume not. Then there is a sequence |t,,| < T and o,, — 1 so that ((o,, + it,) = 0.
By compactness, there is a subsequence ¢, — ¢, along which C(ank + itnk) =0. Ift, #0,
use the continuity of ¢ to get that ((1 + ity) = 0; this is a contradiction. If t; = 0, ¢ blows
up near 1, so can’t be zero nearby. O

We now prove that there’s an absolute constant o, so that ¢’/¢ is holomorphic on a
rectangle [0y, 2] x¢ [—3,3] \ {1}.

Lemma 3.4.26 (LogDerivZetaHolcSmallT). There is a 0, < 1 so that the function
C/
(s
¢

is holomorphic on {0y < Rs < 2,|Ts| < 3} \ {1}.

Proof. The derivative of  is holomorphic away from s = 1; the denominator ¢(s) is nonzero
in this range by Lemma . O

Lemma 3.4.27 (LogDerivZetaHolcLargeT). There is an A > 0 so that for all T > 3, the
function C—/(s) is holomorphic on {1 — A/log” T < Rs < 2, |Js| < T} \ {1}.

9
Proof. The derivative of ( is holomorphic away from s = 1; the denominator ((s) is nonzero
in this range by Lemma . O

Lemma 3.4.28 (LogDerivZetaBndUnif). There exist A, C > 0 such that

(o +it) < Clog P

whenever [t| >3 and o > 1— A/ log |t|°.

Proof. For o close to 1 use Lemma , otherwise estimate trivially. O

3.5 Proof of Medium PNT

The approach here is completely standard. We follow the use of M (1:) as in [Kontorovich
2015].

Definition 3.5.1 (ChebyshevPsi). The (second) Chebyshev Psi function is defined as

Y(a) =Y An),

n<x
where A(n) is the von Mangoldt function.

It has already been established that zeta doesn’t vanish on the 1 line, and has a pole at
s =1 of order 1. We also have the following.
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Theorem 3.5.1 (LogDerivativeDirichlet). We have that, for R(s) > 1

((s) & n*
Proof. Already in Mathlib. O

¢'(s) i A(n)

The main object of study is the following inverse Mellin-type transform, which will turn
out to be a smoothed Chebyshev function.

Definition 3.5.2 (SmoothedChebyshev). Fix ¢ > 0, and a bumpfunction supported in
[1/2,2]. Then we define the smoothed Chebyshev function ¢, from R, to C by

6.0 = 5 [ @ xeds

where we’ll take 0 =1+ 1/log X.

Lemma 3.5.1 (SmoothedChebyshevDirichlet-aux-integrable). Fix a nonnegative, continu—
ously differentiable function F' on R with support in [1/2, 2], and total mass one, f (z)/xdx =

1. Then for any € > 0, and o € (1, 2], the function
x> M) (0 +ix)
is integrable on R.

Proof. By Lemma the integrand is O(1/t?) as t — oo and hence the function is
integrable. O

Lemma 3.5.2 (SmoothedChebyshevDirichlet-aux-tsum-integral). Fix a nonnegative, con-
tinuously differentiable function F' on R with support in [1/2,2], and total mass one,
f(o o) F(z)/xzdx = 1. Then for any ¢ > 0 and o € (1,2], the function z - 32°° A0 37(1)) (o+

n=1 nﬂ+1f
it)z7t s equal to Y f o) n,,f),]\/[( (o +it)xotit,

Proof. Interchange of summation and integration. O
Theorem 3.5.2 (SmoothedChebyshevDirichlet). We have that

iA n/X

n=1

Proof. We have that

P (X) = 1/() > A(n)M(t)(s)XSds.

211 ns
n=1

We have enough decay (thanks to quadratic decay of M (i:)) to justify the interchange of
summation and integration. We then get

(X0 =3 Mg [ AT /00

and apply the Mellin inversion formula. O
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The smoothed Chebyshev function is close to the actual Chebyshev function.
Theorem 3.5.3 (SmoothedChebyshevClose). We have that

$,(X) = (X) + O(eX log X).

Proof. Take the difference. By Lemma and 7 the sums agree except when 1 —ce <
n/X < 1+ ce. This is an interval of length <« eX, and the summands are bounded by
A(n) < log X.

O

Returning to the definition of 9, fix a large T' to be chosen later, and set oy = 14+1/logX,
oy =1-A/logT? and o, < o, a constant. Pull contours (via rectangles!) to go from o,—ioco
up to oy — 47", then over to oy — 41", up to o; — 31, over to oy — 37, up to oy + 37, back over
to oy + 34, up to oy + T, over to o, + ¢1, and finally up to o, + ico.

In the process, we will pick up the residue at s = 1. We will do this in several stages.
Here the interval integrals are defined as follows:

Definition 3.5.3 (I).

Y ey g - .
e x 1) = o [ (T )] @ty + e xeo i ar

Definition 3.5.4 (I).

1 e ~ ,
L(v,e. X.T.0y) =5 - ( (o iT)) M) (o —iT)X7T do
!

Definition 3.5.5 (I ).

1 g _C/ . 7 N\ Yo+t 5
i), ( c (0 —i—tz)) M(1,)(oq +ti) X i dt

I;(v,e, X,T,0q) :=

Definition 3.5.6 (I).

1[0 [ - |
I(v,e, X,T,0,) = 5 ( CC (a—i—Tz')) MA,) (o +Ti)X T do
91

Definition 3.5.7 (I).

/

I(v,e, X,T) = 217”/; (‘f(o—o +ti)> M) (o + ti) X0t § dt

Definition 3.5.8 (I).

1 [ = - ,
e X Ty = on [ (St ) oy + e xe i a
—T

Definition 3.5.9 (I).

iC’
¢

1 7 - ,
L(v,e, X,T,0q) := 5 ( (0 —|—ti)> M (1) (oy + ti) X1t 4 dt
3
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Definition 3.5.10 (I).

1 [ (= - ‘
Ii(v,e,X,0q,09) := 37 ( ¢ (0—32')) M(1,) (o —3i) X3 do

Definition 3.5.11 (I).

1 [ - .
Is(v,e, X, 0q,049) = 5 ( ¢ (O’—|—3i)> M(1)(o+3i) X3 do

Definition 3.5.12 (I).

1 3 s » )
I;(v,e, X, 04) := 5 ( << (og + tz)) M (1) (og + ti) X721t 4 dt
-3

Lemma 3.5.3 (dlog-riemannZeta-bdd-on-vertical-lines). For o, > 1, there exists a constant
C > 0 such that

t
Vi e R, C oo +4)
C(og + i)
Proof. Write as Dirichlet series and estimate trivially using Theorem . O

Lemma 3.5.4 (SmoothedChebyshevPulll-aux-integrable). The integrand

¢"(5)/C(s) M (1) (s) X
is integrable on the contour o, + ti for t € R and o, > 1.

Proof. The ¢’(s)/¢(s) term is bounded, as is X*, and the smoothing function M (T,)(s)

decays like 1/|s|2 by Theorem . Actually, we already know that M (1,)(s) is integrable
from Theorem , so we should just need to bound the rest. O

Lemma 3.5.5 (BddAboveOnRect). Let g : C — C be a holomorphic function on a rectan-
gle, then ¢ is bounded above on the rectangle.

Proof. Use the compactness of the rectangle and the fact that holomorphic functions are
continuous. O

Theorem 3.5.4 (SmoothedChebyshevPulll). We have that
V(X) = MA)O)X + 1) — Iy + Iyr + Ig + I,
Proof. Pull rectangle contours and evaluate the pole at s = 1. O
Next pull contours to another box.
Lemma 3.5.6 (SmoothedChebyshevPull2). We have that
Iop =13 — 1, + 15+ I+ I;.
Proof. Mimic the proof of Lemma . O

We insert this information in ¢.. We add and subtract the integral over the box [1 —
0,2] x¢ [T, T), which we evaluate as follows
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Theorem 3.5.5 (ZetaBoxEval). For all e > 0 sufficiently close to 0, the rectangle integral
over [1 —§,2] x¢ [T, T] of the integrand in ¢, is

M (T)(1) = X (14 O(e)),

where the implicit constant is independent of X.
Proof. Unfold the definitions and apply Lemma . O

It remains to estimate all of the integrals.
This auxiliary lemma is useful for what follows.

Lemma 3.5.7 (IBound-aux1l). Given a natural number k and a real number X, > 0, there
exists C' > 1 so that for all X > X,

log" X < C - X.

Proof. We use the fact that logk X /X goes to 0 as X — co. Then we use the extreme value
theorem to find a constant C' that works for all X > X,. O

Lemma 3.5.8 (I1Bound). We have that

X
I X, T —.
| 1(1/367 i >|<< eT

Same with 1.

Proof. Unfold the definitions and apply the triangle inequality.

Y ey g - ,
e X 1) = g [ (T oo+t 20Ty + )X e

By Theorem (once fixed!!), ¢’ /¢(oy + ti) is bounded by ¢’'/((o,), and Theorem
gives <« 1/(0y, — 1) for the latter. This gives:

1
< = ,
2T

-7 c’
/ Clog X - — X7 dt
—00 6|0'0 + tl|2

where we used Theorem . Continuing the calculation, we have
X0 (711 Xlog X
< logX-C”—/ 5 dt < on 2982
€ —00

where we used that oy =1+ 1/log X, and X% = X - XVlogX — ¢, X, O
Lemma 3.5.9 (I2Bound). Assuming a bound of the form of Lemma we have that

X
Lv,e, X, T)| <« —.
[5(v, € )l T
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Proof. Unfold the definitions and apply the triangle inequality.

|Iy(v,e, X, T,0q)| =

L /U (_C/ (0 — Ti)) M@)o —Ti)- X T do

2mi J, ¢
c’ XlogT?
C-1 T9 X% do < O -
_27r/1 8 T|2 7= erz -’
where we used Theorems , the hypothe&sed bound on zeta and the fact that X7 <
X% = X . XY1eX — ¢. X Since T > 3, we have logT° < C”'T. O

Lemma 3.5.10 (I812). Symmetry between I, and Ig:
Igw,e, X,T) = —I,(v,e, X,T).
Proof. This is a direct consequence of the definitions of I, and Ig. O

Lemma 3.5.11 (I8Bound). We have that

X
I X, T —.
| 8(1/367 ) )|<< 6T

Proof. We deduce this from the corresponding bound for I,, using the symmetry between
I, and Ig. O

Lemma 3.5.12 (log-pow-over-xsg-integral-bounded). For every n there is some absolute

constant C' > 0 such that
/ (log x) (ogz)” &
A x?
Proof. Induct on n and just integrate by parts. O
Lemma 3.5.13 (I3Bound). Assuming a bound of the form of Lemma we have that
L(v,e, X, T)| < %X*%

Same with I,.

Proof. Unfold the definitions and apply the triangle inequality.

1 2= - .
e X T o)l = o | (%1 #10)) A (Lo + )X
T

27 ) ¢
< — / ¢ ——— X% dt,
+ ti]?
where we used Theorems B and the hypothes1sed bound on zeta. Now we estimate
X=X X*A/long, and the integral is absolutely bounded. O

Lemma 3.5.14 (I4Bound). We have that
X A
|I4(Va €, X, 015 0’2)‘ K — X (ogT)?
€

Same with I.
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Proof. The analysis of I, is similar to that of I,, (in Lemma ) but even easier. Let C'
be the sup of —¢’/¢ on the curve g, 4 3i to 1+ 3i (this curve is compact, and away from the
pole at s = 1). Apply Theorem ‘ to get the bound 1/(e|s|?), which is bounded by C”/e.
And X* is bounded by X1 = X - X~4/108T°  Putting these together gives the result. [

Lemma 3.5.15 (I5Bound). We have that

g2

X
| I5(v, e, X, 09)| < —

Proof. Here (’/( is absolutely bounded on the compact interval oy + i[—3,3], and X* is
bounded by X?2. Using Theorem gives the bound 1/(e|s|?), which is bounded by
C" /e. Putting these together gives the result. O

3.6 MediumPNT

Theorem 3.6.1 (MediumPNT). We have

Z A(n) = x + O(z exp(—c(log 2)/19)).

n<x

Proof. Evaluate the integrals. O
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Chapter 4

Third Approach

4.1 Hadamard factorization

In this file, we prove the Hadamard Factorization theorem for functions of finite order, and
prove that the zeta function is such.

4.2 Hoffstein-Lockhart

In this file, we use the Hoffstein-Lockhart construction to prove a zero-free region for zeta.
Hoffstein-Lockhart 4+ Goldfeld-Hoffstein-Liemann
Instead of the “slick” identity 3+ 4 cos 6 +cos 26 = 2(cos §+1)2 > 0, we use the following
more robust identity.

Theorem 4.2.1. For any p > 0 and t € R,
34 p2it 4 p 2t 4 9pit L op=it > ().
Proof. This follows immediately from the identity
114 pit 4+ pit|2 = 1 + p2it 4+ p2it 4 2pit 4 2p=it 4 2,
O

[Note: identities of this type will work in much greater generality, especially for higher
degree L-functions.|
This means that, for fixed ¢, we define the following alternate function.

Definition 4.2.1. For 0 > 1 and ¢t € R, define
F(o) := (3(0)C? (0 + it)(% (o — it)((o + 2it)( (o — 2it).
Theorem 4.2.2. Then F is real-valued, and whence F'(o) > 1 there.
Proof. That log F(o) > 0 for o > 1 follows from Theorem . O

[Note: T often prefer to avoid taking logs of functions that, even if real-valued, have to be
justified as being such. Instead, I like to start with “logF” as a convergent Dirichlet series,
show that it is real-valued and non-negative, and then exponentiate...]

From this and Hadamard factorization, we deduce the following.
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Theorem 4.2.3. There is a constant ¢ > 0, so that {(s) does not vanish in the region

oc>1— @, and moreover,
/
—%(aJr it) < (logt)?
there.
Proof. Use Theorem and Hadamard factorization. O

This allows us to quantify precisely the relationship between T" and  in Theorem

4.3 Strong PNT

Definition 4.3.1. Given a complex function f, we define the function
2 = z )
9(2) £(0), z=0.

Lemma 4.3.1. Let f be a complex function and let z # 0. Then, with g defined as in
Definition ,

_f(®)
9(z) = =
Proof. This follows directly from the definition of g. O

Lemma 4.3.2. Let f be a complex function analytic on an open set s containing 0 such
that f(0) = 0. Then, with g defined as in Definition , g is analytic on s.

Proof. We need to show that g is complex differentiable at every point in s. For z # 0, this
follows directly from the definition of g and the fact that f is analytic on s. For z = 0, we
use the definition of the derivative and the fact that f(0) = 0:

9@ —g0) RO )= PO f(2) = f(0) = [ 0)(=~0)
z—0 z — 0 z—0 z z—0 22 z—0 (Z — 0)2

207

where the last equality follows from the definition of the derivative of f at 0. Thus, g is
complex differentiable at 0 with derivative 0, completing the proof. O

Lemma 4.3.3. Let f be a complex function analytic on the closed ball |z| < R such that
f(0) = 0. Then, with g defined as in Definition , g is analytic on |z| < R.

Proof. The proof is similar to that of Lemma , but we need to consider two cases: when
x is on the boundary of the closed ball and when it is in the interior. In the first case, we take
a small open ball around x that lies entirely within the closed ball, and apply Lemma
on this smaller ball. In the second case. we can take the entire open ball centered at 0 with
radius R, and again apply Lemma {.3.2. In both cases, we use the fact that f(0) = 0 to
ensure that the removable singularity at 0 is handled correctly. O

Definition 4.3.2. Given a complex function f and a real number M, we define the function

fu(z) = Wg(z}(z)’

where g is defined as in Definition .
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Lemma 4.3.4. Let M > 0. Let f be analytic on the closed ball |z| < R such that f(0) =0
and suppose that 2M — f(z) # 0 for all |z| < R. Then, with f,,; defined as in Definition 1.3.9,
fur 1s analytic on |2| < R.

Proof. This follows directly from Lemma and the fact that the difference of two analytic
functions is analytic. O]

Lemma 4.3.5. Let M > 0 and let = be a complex number such that Rz < M. Then,
|z] < |2M — z|.

Proof. We square both sides and simplify to obtain the equivalent inequality
0 < 4M? — 4M*Rz,
which follows directly from the assumption Rz < M and the positivity of M. O

Theorem 4.3.1 (borelCaratheodory-closedBall). Let R, M > 0. Let f be analytic on
|z] < R such that f(0) = 0 and suppose Rf(z) < M for all |z] < R. Then for any
0<r<R,

2Mr
sup |f(2)] < .
wp £ <

Proof. Let
_ [/
Note that 2M — f(z) # 0 because R(2M — f(z)) = 2M — Rf(z) > M > 0. Additionally,
since f(z) has a zero at 0, we know that f(z)/z is analytic on |z| < R. Likewise, f,;(z) is
analytic on |z| < R.
Now note that |f(2)| < |2M — f(z)| since Rf(z) < M. Thus we have that

e 1
&= o 5o < T

Now by the maximum modulus principle, we know the maximum of | f,,| must occur on the
boundary where |z| = R. Thus, |f;(2)| < 1/R for all |z| < R. So for |z| = r we have

—7”‘(2:)'/7” l z T — J(z r+r z

Which by algebraic manipulation gives

2Mr
R—1r’

IF(z)] <

Once more, by the maximum modulus principle, we know the maximum of |f| must occur
on the boundary where |z| = r. Thus, the desired result immediately follows O

Lemma 4.3.6 (DerivativeBound). Let R, M > 0 and 0 < r < 1’ < R. Let f be analytic
on |z| < R such that f(0) = 0 and suppose R f(z) < M for all |z| < R. Then we have that

OM ()2

|f/(2:)| < (R _ 7n/)(,,./ 7T)2

for all |z| <.
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Proof. By Lemma we know that
TS| f(w) _ L [Tt f(ret)
F'(z) = 2mi iﬂlr’ (w— 2)? dw = 2 /0 (r'eit — 2)2 dt.

zt f( / zt)

(r et — z)2

Thus,

dt. (4.1)

21 s gt /7t
el [

2m (r'ett — 2)2

Now applying Theorem ??, and noting that " —r < |r’e" — 2|, we have that

Pt pre| M)
(re” z)? S(R—r’)(r’—r)Q'

Substituting this into Equation (@) and evaluating the integral completes the proof. [
This upstreamed from https://github.com/math-inc/strongpnt/tree/main

Lemma 4.3.7 (cauchy-formula-deriv). Let f be analytic on |z| < R. For any z with |z| <r
and any r’ with 0 < r <1’ < R we have

1 f(w) L [7rlet f(ret)
(z) = — ——dw = — ———dt.
7'z 2mi iﬂlr’ (w—2)2 R b (r et —z)2
Proof. This is just Cauchy’s integral formula for derivatives. O

Lemma 4.3.8 (DerivativeBound). Let R, M > 0 and 0 < r < 7’ < R. Let f be analytic
on |z| < R such that f(0) = 0 and suppose R f(z) < M for all |z| < R. Then we have that

M (1)
(R =P

[f'(2)] <

for all |z| <.

Proof. By Lemma we know that

o1 fw) 1 Tt (et
f(z) = Mjéq—w T du = 27T/0 e

<1/27rre”fre)
_27T0

2
Now applying Theorem ??, and noting that 7 — r < |r’e® — 2|, we have that

et f(r'ett) < 2M(r')?
(r'eit —2)2 | = (R—71")(r" —r)%

Thus,
1 2w / zt zt
1 / f (T e dt

(&) =5 Tt dt. (4.2)

(r’eit

Substituting this into Equation (@) and evaluating the integral completes the proof. [
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Theorem 4.3.2 (BorelCaratheodoryDeriv). Let R, M > 0. Let f be analytic on |z| < R
such that f(0) = 0 and suppose R f(z) < M for all |z|] < R. Then for any 0 < r < R,

16M R?

/ < o

PO s
for all |z| <.

Proof. Using Lemma with " = (R + r)/2, and noting that » < R, we have that

AM(R +1)? - 16M R?
(R—r)3 — (R—r)3

[f'(2)] <

O

Theorem 4.3.3 (LogOfAnalyticFunction). Let 0 < r < R < 1. Let B : D — C be
analytic on neighborhoods of points in Dy with B(z) # 0 for all z € Dg. Then there exists
Jp : D, = C that is analytic on neighborhoods of points in D, such that

e« Jg(0)=0

« Jh(z) = B'(2)/B(2)

o log|B(z)| —log |B(0)| = RJp(z)
for all z € IDTT

Proof. We let Jg(z) = LogB(z) — Log B(0). Then clearly, J5(0) = 0 and Jz(z) =
B'(z)/B(z). Showing the third property is a little more difficult, but by no standards
terrible. Exponentiating Jz(z) we have that

B(z)

exp(Jz(2)) = exp(Log B(z) — Log B(0)) = B0)

= B(2) = B(0) exp(Jp(2))-
Now taking the modulus
[B(2)| = |B(0)] - [exp(J(2))] = [B(0)| - exp(R(2)).

Taking the real logarithm of both sides and rearranging gives the third point. O

Definition 4.3.3 (SetOfZeros). Let R > 0 and f : D — C. Define the set of zeros
Ki(R)={peC:|p| <R, f(p) =0}

Definition 4.3.4 (ZeroOrder). Let 0 < R <1 and f : C — C be analtyic on neighborhoods
of points in D;. For any zero p € X ;(R), we define m(p) as the order of the zero p w.r.t f.

Lemma 4.3.9 (ZeroFactorization). Let f: D; — C be analytic on neighborhoods of points
in Dy with f(0) # 0. For all p € X (1) there exists h,(z) that is analytic at p, h,(p) # 0,
and f(z) = (z—p)"™1"? h,(2).

Proof. Since f is analytic on neighborhoods of points in D; we know that there exists a

series expansion about p:
1) = a, (== p)"

0<n
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Now if we let m be the smallest number such that a,, # 0, then

=D a,(z=p)" =Y ay(z=p)" = (=)™ Y ay (2= )" = (2= p) "y (2),

0<n m<n m<n
Trivially, h p(z) is analytic at p (we have written down the series expansion); now note that

hy(p) = a,(p—p)" ™ =Y a,0"™ =a, #0.

m<n m<n

O

Definition 4.3.5 (CFunction). Let 0 < r < R < 1, and f : D; — C be analytic on
neighborhoods of points in D; with f(0) # 0. We define a function C} : D — C as follows.
This function is constructed by dividing f(z) by a polynomial whose roots are the zeros of

f inside D,..
f(2)
I1 (z—p)ms¥)
_ PEX (1)
GE=1 T e
— p)ms(p)
o gy (2= P77
where h,(z) comes from Lemma .

for 2 & K 4(r)

for z € K 4(r)

Definition 4.3.6 (BlaschkeB). Let 0 < r < R < 1, and f : D; — C be analytic on
neighborhoods of points in D; with f(0) # 0. We define a function B, : D — C as follows.

2D mf(/’)
B =Gy [ (R-F)
PEX (1)

Lemma 4.3.10 (BlaschkeOfZero). Let 0 < v < R < 1, and f : D; — C be analytic on
neighborhoods of points in I; with f(0) # 0. Then

R mf(ﬂ)
|Bf<o>\—|f<o>|p€XH (p|) .

Proof. Since f(0) # 0, we know that 0 ¢ X ¢(r). Thus,

o
I pme@

PEXK (1)

C(0) =

Thus, substituting this into Definition ,
R m,f(ﬂ)
Boi=ie 0l JT & =150 ] ()
peﬂc pe ;(r) MP
O

Lemma 4.3.11 (DiskBound). Let B > 1 and 0 < R < 1. If f: C — C is a function
analytic on neighborhoods of points in D, with [f(z)| < B for |z| < R, then |B;(z)| < B for
|z] < R also.
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Proof. For |z| = R, we know that z ¢ X (r). Thus,

o
I z=pmst

PEX 4(1)

Cf(z) =

Thus, substituting this into Definition ,

R— 2p/R|™"
z—p

By(2) =1f(=) ]

PEX (1)

But note that B .
LB LR T NER S T
z—p |z — pl |z = pl
So we have that |B;(z)| = |f(z)] < B when |z| = R. Now by the maximum modulus
principle, we know that the maximum of |B;| must occur on the boundary where |z = R.

Thus [B(z)| < B for all |2| < R. O

Theorem 4.3.4 (ZerosBound). Let B>1and 0 <7 < R<1. If f: C — C is a function
analytic on neighborhoods of points in D; with f(0) = 1 and |f(2)| < B for |z| < R, then

log B
S mglp) < —B7
R log(R/7)

Proof. Since f(0) = 1, we know that 0 ¢ X ;(r). Thus,
f(0)
[I ot

PEX §(r)

Cy(0) =

Thus, substituting this into Definition ,

m(p)
S pes pin M (P) _ <§) M
(/1) (%) <1

PN
(&) =i01<5
PEX 4(r) PEX §(r)

ol

whereby Lemma we know that |B;(z)| < B for all |z| < R. Taking the logarithm of
both sides and rearranging gives the desired result. O

Definition 4.3.7 (JBlaschke). Let B > 1 and 0 < R < 1. If f : C — C is a function
analytic on neighborhoods of points in D; with f(0) =1, define L;(z) = JBf(z) where J is
from Theorem and By is from Definition

Lemma 4.3.12 (BlaschkeNonZero). Let 0 < 7 < R < 1 and f : D; — C be analytic on
neighborhoods of points in ;. Then B(z) # 0 for all z € D,..

Proof. Suppose that z € X ¢(r). Then we have that

h.(z)
C.(z)= .
s [T G—pmt

peX ;(rNiz)
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where h,(z) # 0 according to Lemma . Thus, substituting this into Definition ,

9 my(2) my(p
—2p/R
B2 = (o)) [ gt 43)
peX (N2} P
Trivially, |h,(2)| # 0. Now note that
2
o]0 1o

However, this is a contradiction because z € D, tells us that |2| < r < R. Similarly, note

that
‘R —zp/R|

R2
z—p ~
However, this is also a contradiction because p € X ;(r) tells us that R < R?/[p| = ||, but
z € D, tells us that |z] <7 < R. So, we know that

‘ \2\2 zp/R

+0 and ’ ‘7’:0 forall pe X ;(r)\{z}.

Applying this to Equation (@) we have that |Bf z)| # 0. So, By(z) # 0.
Now suppose that z ¢ X ;(r). Then we have that
f(z)
I G=pmitor

PEX 4(r)

Ci(z2) =

Thus, substituting this into Definition ,

R*Zﬁ/R mf(ﬁ)

— (4.4)

1Br(2)l = If(2) ]

PEX (1)

We know that |f(z)| # 0 since z ¢ X ;(r). Now note that

R—2zp/R
z—p

R2

ol

However, this is a contradiction because p € X ;(r) tells us that R < R?/|p| = |z|, but
z € D, tells us that |z| <7 < R. So, we know that

‘ zp/R

‘7’:0 for all pe X 4(r).

Applying this to Equation (@) we have that |B;(z)| # 0. So, B(z) # 0.
We have shown that B(z) # 0 for both z € X ;(r) and z ¢ X ;(r), so the result
follows. O

Theorem 4.3.5 (JBlaschkeDerivBound). Let B>1land 0 <+ <r<R<1L Iff:C—C
is a function analytic on neighborhoods of points in D; with f(0) = 1 and |f(z)| < B for all
|z] < R, then for all |z] <1’

16log(B) 12

L < —
Lyl < B
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Proof. By Lemma @.3.11 we immediately know that |B(z)| < B for all |z| < R. Now since
Ly=1J B, by Definition }.3.7, by Theorem we know that

Ly(0)=0 and RL;(2) =log|B(2)| —log|B;(0)| <log|B(z)| < log B
for all |z| < r. So by Theorem , it follows that

16log(B) r?
L < —
| f(z)‘ — (7‘—7")3
for all |z| <. O
Theorem 4.3.6 (FinalBound). Let B>land 0 <+ <r<R <R<1.Iff:C—Cis

a function analytic on neighborhoods of points in D; with f(0) = 1 and |f(z)| < B for all
|2| < R, then for all z € Dp/ \ X ;(R’) we have

o ms(p) 1612 1 .
7 pexzf(m 2= S<<7°—7“/>3+<1~%2/R/—R/> log<R/R/>>1gB'

Proof. Since z € D, \ X ;(R’) we know that z ¢ X ;(R’); thus, by Definition we know

that
f(2) .
II G=—pmt

PEX ¢(R')

Substituting this into Definition we have that

Cf(z) =

R_Zp/R>mf(p)

o= I (52
R’)

PEX #(
Taking the complex logarithm of both sides we have that

Log Bp(z) = Log f(2) + D> my(p)Log(R—2p/R)— Y my(p)Log(z—p).
pedC (R pe (R

Taking the derivative of both sides we have that

(Z):L/(Z)+ 3 _mylp) S mf(p>_

—_p2/, _
f pedciir) © R?/p pedciiny 2P

By Definition and Theorem we recall that

Li(2) = JBf(z) = Log B(z) — Log B4(0).

By
By

Taking the derivative of both sides we have that L’(2) = (B}/By)(2). Thus,

i’(z)_ > mf(p):L,f(Z)_ > my(p)

_ _R2/,
f pej(f(R,>z P pej(f(R/>z R2/p
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Now since z € Dy, and p € X ((R’), we know that R*/R’ — R’ < |z — R?/p|. Thus by the
triangle inequality we have

, mo)|_ ., i
Lo- ¥ MO ol (mp—g) X mio

peic (r) Z TP PEX (R

Now by Theorem and we get our desired result with a little algebraic manipulation.

O
Theorem 4.3.7 (ZetaFixedLowerBound). For all ¢ € R one has
, ¢(3)
C(3/2+1t)| > .
Proof. From the Euler product expansion of {, we have that for s > 1
1
) =115 —
P
Thus, we have that
¢(2s) B 1—p° 1
o Ui =1l
Now note that |1 —p~(3/2+8)| < 1 4 |p~3/24%)| = 1 4 p=3/2, Thus,
. 1 1 ¢(3)
2414t)| = _— > =
1C(3/2 +it)] ];[ i *p7(3/2+”)| = 1;[ 1+ p3/2 c(3/2)
for all £ € R as desired. O

Lemma 4.3.13 (ZetaAltFormula). Let

Cols) =1+ sfll — s/loo{z}xs d?x
We have that ((s) = (y(s) for o > 1.
Proof. Note that for o > 1 we have
efi-fa Fasifa s a sa & n
=nt e nt = ond =nt = (n+1)s Lens L~ (n+1)s
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So, substituting this we have
00 00 n+1 dx o'} dz
((s)=Zn(n_5—(n—|—1)_s)232n/ x_S?:s/ Lxe‘S?.
n=1 n=1 n 1

But noting that |z] = 2 — {} we have that

C(s):s/looptjx_scijzs/lmx_sdx—s/lm{x}x_sdx.

T
Evaluating the first integral completes the result. O

Lemma 4.3.14 (ZetaAltFormulaAnalytic). We have that (,(s) is analytic for all s € S
where S = {s € C:Rs >0, s # 1}.

Proof. Note that we have

/100{58} x~s dx—x

So this integral converges uniformly on compact subsets of S, which tells us that it is analytic
on S. So it immediately follows that (,(s) is analytic on S as well, since S avoids the pole
at s = 1 coming from the (s —1)~! term. O

o0 o0 1
< / Hz} a1 dx < / r o ldr = —.
1 1

g

Lemma 4.3.15 (ZetaExtend). We have that

1 o dx
=14+ — —s &
=t g [ abe
for all s € S.
Proof. This is an immediate consequence of the identity theorem. O

Theorem 4.3.8 (GlobalBound). For all s € C with |s| <1 and ¢t € R with || > 2, we have
that
[C(s+3/2+it)] <7+ 2]¢t.

Proof. For the sake of clearer proof writing let z = s + 3/2 4+ it. Since |s| < 1 we know that
1/2 < Rz; additionally, as |t| > 2, we know 1 < |Jz|. So, z € S. Thus, from Lemma

we know that - p
,Zj
JCE

by applying the triangle inequality. Now note that |z — 1| > 1. Likewise,

1
|2 —

[C() <1+

|2l -

o0 d o0 o0

[{x}ngf‘w/l (aheao < el [ I - R
Thus we have that,

C(s4+3/2+it)| = |C(2)] S L4142z =2+2|s+3/2+1it] <242s|+3+2]it] <7+2]tl.

O
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Theorem 4.3.9 (LogDerivZetaFinalBound). Let ¢ € R with || >2and 0 <7’ <r < R’ <
R < 1. If f(2) = ((2 +3/2 +1it), then for all z € Dz \ X ;(R’) we have that

L m;(p) ( 1672 ) )
f (2) pejCZf(R/) Z—p < (’I"—T/>3 + (RQ/R/ _R/> 10g(R/R’) 10g|t|

Proof. Let g(z) = ((z +3/2+ it)/¢(3/2 + it). Note that g(0) =1 and for |2| < R

324 i) _ C3/2) 134(3/2)

Y= =@ T = T

by Theorems and . Thus by Theorem M we have that

m,(p) g( 1672 1 13§(3/2)>).

9~ 0 og | ——=—=
P P T RR-R) log<R/Rf>) (l slt] +1 g( 30(3)

pedc,(r) © TP

Now note that f'/f = g'/g, X(R') = X (R'), and m,(p) = m(p) for all p € K ;(R').
Thus we have that,

mf(P) «

peicyr) <P

1672 1
- (A e )

7
f

where the implied constant C' is taken to be

C>14 log((13 C(?éz);/(g 3)

Definition 4.3.8 (ZeroWindows). Let Z, = {p € C: ((p) =0, |p — (3/2 +it)| < 5/6}.

Lemma 4.3.16 (SumBoundI). For all 6 € (0,1) and ¢ € R with |t| > 2 we have

Iy

’ ‘ me(p)
T+6+it)— Y ——2
(1+0+it) pezz:1+6+z‘t—p

< loglt|.

|

Proof. We apply Theorem where ' =2/3, r =3/4, R" =5/6, and R = 8/9. Thus, for
all z € Dy /5 \ K 4(5/6) we have that

4 m
%(z+3/2+it)— S Zi('”) « log|t|
pek ;56 © P

where f(z) = ((z + 3/2 +it) for t € R with |t| > 3. Now if we let z = —1/2 4§, then
z € (—1/2,1/2) C D5 /5. Additionally, f(z) = ((1 + & +it), where 1 4 + it lies in the
zero-free region where o > 1. Thus, 2z ¢ X ;(5/6). So,

¢ ) m(p)
Sasoviy- Y P
¢ pedc o T2 H =

< loglt|.
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But now note that if p € X ;(5/6), then ((p+3/2+it) = 0 and |p| < 5/6. Thus, p+3/2+it €
Z,. Additionally, note that m(p) = m¢(p + 3/2 +it). So changing variables using these
facts gives us that

’ . me(p)
1 £ — I U
(148 +it) gl—i—é—&-it—p

Iy

< loglt|.

|

Lemma 4.3.17 (ShiftTwoBound). For all 6 € (0,1) and ¢ € R with |t| > 2 we have

—R (g(l +d+ Qit)) < logt|.

Proof. Note that, for p € Z,,

9%( 1 >—5R 1+6—2it—p
L+5+2it—p) (14§ + 2it — p)(1 + § — 2it — p)
R(1+6—2it—p) 1+6—%Rp

T+ o+2it—p2  (1+6—Rp)® + (2t—3p)2

Now since p € Z,,, we have that |p — (3/2 + 2it)| < 5/6. So, we have Rp € (2/3,7/3) and
Jp € (2t —5/6,2t + 5/6). Thus, we have that

1/3<1+46—Rp and  (14+6—Rp)2+ (2t —Tp)? < 16/9 + 25/36 = 89/36.

Which implies that

12 1+6—Rp ( 1 ) (45)

<7 pu—
0 S “Tro-mprri—mp \T¥orau—y

Note that, from Lemma , we have

1 aq (¢ ) <& oo S mel)
ng(ﬂ)%<1+5+2it_p> m(c(l+5+2zt)>g <(1+6+21t) p;% T < log |2t).

PEZ a4

Since m(p) > 0 for all p € 2y, the inequality from Equation (@) tells us that by sub-
tracting the sum from both sides we have

—R <<C(1 +d+ 2it)> < log|2t|.
Noting that log|2¢| = log(2) + log || < 2log|t| completes the proof. O

Lemma 4.3.18 (ShiftOneBound). There exists C' > 0 such that for all § € (0,1) and t € R
with [t| > 3; if {(p) = 0 with p = o + it, then

) (C/(l+5+it)> < -

1
+ Cloglt|.
¢ —0

146
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Proof. Note that for p’ € Z,

m( 1. ):%< .1—|-5—1t—p ‘ )
1+6+it—p (14+d6+it—p)1+0—it—p')
R(A+6—it—p') 14+d6—Rp

T 4o +it—p 2 (A40—Rp )2+ (t—3p)2

Now since p” € Z,, we have that |[p — (3/2 +it)| < 5/6. So, we have Rp’ € (2/3,7/3) and
Jp’ € (t—5/6,t+5/6). Thus we have that

1/3<1+06—Rp and (146 —Rp)%+ (t—Tp') < 16/9 + 25/36 = 89/36.

Which implies that

12 1+0—Rp ( 1 )
0<—=< = . 4.6
T8 (14+6—Rp)2+(t—Tp)? 1+0+it—p (4.6)
Note that, from Lemma , we have
1 ¢ ) ¢’ . m(p)
g %7—%—16t<—16t—§7 log [t].
peztmd”) <1+5+it—p> (C( * H))— << To+it) Sz 1+o+it—p <loglt]

Since m(p) > 0 for all p” € 2, the inequality from Equation (@) tells us that by subtract-
ing the sum over all p’ € Z, \ {p} from both sides we have

¢ , )
—R([=(1+d+1it) | <loglt|.
But of course we have that R(1+ 6 + it — p) = 1+ — 0. So subtracting this term from
both sides and recalling the implied constant we have
¢ ,
—R z(1+5+zt) < -

mg(ﬂ)
R(1+ 0+t —

mc(ﬂ)
4 Clog ).
Tro_o " Closlt

We have that o < 1 since ( is zero free on the right half plane 0 > 1. Thus 0 < 1+ — 0.
Noting this in combination with the fact that 1 < m(p) completes the proof. O

Lemma 4.3.19 (ShiftZeroBound). For all 6 € (0,1) we have

» (ga " 5)) <5 +0q)

Proof. From Theorem we know that

e = sil +o(1).

Changing variables s = 1 + ¢ and applying the triangle inequality we have that

—R (C/(l+6)> < —€(1+5)‘ < -+ 0(1).

1
¢ 5
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Lemma 4.3.20 (ThreeFourOneTrigldentity). We have that
0<3+4cosf + cos20

for all 8 € R.
Proof. We know that cos(26) = 2cos? 0 — 1, thus

3+ 4cosf+cos20 =2+ 4cosf +2cos?0 = 2 (1 + cos ).
Noting that 0 < 1 4 cos# completes the proof. O

Theorem 4.3.10 (Zerolnequality). There exists a constant 0 < E < 1 such that for all
p = o+ it with ((p) = 0 and |t| > 2, one has

E
c<l———.
log ¢]
Proof. From Theorem when s > 1 we have
¢y N Al
R () ; e
Thus,
-3 %(1 +6)—4 %(1 + 6 +it) — %(1 +6+2it) =Y A(n)n () (34 4n = 4 p720t).
1<n

Now applying Euler’s identity

3 (Sa4a)—an (Sarori) -n(Carorai)

= Z A(n)n~0+9) (3 + 4 cos(—itlogn) + cos(—2itlogn))
1<n

By Lemma we know that the series on the right hand side is bounded below by 0, and
by Lemmas §.3.17, E.3.1§, and E.?).la we have an upper bound on the left hand side. So,

3 4
< - A— — 1+ 4B] I
O_5+3 1+5_U+ oglt| + C'log|t|

where A, B, and C are the implied constants coming from Lemmas |4.3.1d, |4.3.1d, and |4317i
respectively. By choosing D > 3A4/log2 + 4B + C we have

4
1+0—0

< % + Dlog |t]

by some manipulation. Now if we choose § = (2D1log[t|)~! then we have

4

1—0+41/(2Dloglt|) < TDlogt]
So with some manipulation we have that
c<1— #
- 14Dlog |¢|
This is exactly the desired result with the constant E = (14D)! O
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Definition 4.3.9 (DeltaT). Let §, = E/log |¢t| where E is the constant coming from Theo-
rem E.?).l(].

Lemma 4.3.21 (DeltaRange). For all t € R with [¢| > 2 we have that
5, < 1/14.

Proof. Note that 6, = E/log|t| where FE is the implied constant from Lemma . But
we know that E = (14D)~! where D > 3A4/log2 + 4B + C where A, B, and C are the
constants coming from Lemmas |4.3.1d, |4.3.18|, and |4.3.17| respectively. Thus,
< 1
~ 14(3A/log2+4B+C)’
But note that A > 0 and B > 0 by Lemmas |4.3.1d and |4.3.1§ respectively. However, we
have that

21og((13¢(3/2))/(3¢(3)))

log 2

by Theorem with Lemmas |4.3.1d and |4.3.1?|. So, by a very lazy estimate we have C' > 2
and E <1/28. Thus,

E

c>2+

E 1 1

5, = <
t " loglt] = 28log2 14

O

Lemma 4.3.22 (SumBoundlII). For all ¢t € R with |¢| > 2 and z = 0 + it where 1 —4,/3 <
o < 3/2, we have that

/
m
CoH-% <O ogt.
C pEZ, Z=p
Proof. By Lemma we have that

—11/21 < —1/2—6,/3 <o —3/2 <0.

We apply Theorem where " = 2/3, r = 3/4, R’ = 5/6, and R = 8/9. Thus for all

2 € D56 \ K 4(5/6) we have that

Iy

/ m
(z+3/2+it)— > FO ol
z—p
peX 1(5/6)

|

where f(z) = ((z+ 3/2 +it) for t € R with [t| > 3. Now if we let z = 0 — 3/2, then
z € (—11/21,0) C Dy 4. _Additionally, f(z) = ((o + it), where o + it lies in the zero free
region given by Lemma since 0 > 1 —0,/3 > 1 —9,. Thus, z ¢ X ;(5/6). So,

mf(ﬂ)

(o +it) — )7073/27/)

¢ < loglt|.
¢ PEX £(5/6

But now note that if p € X' (5/6), then ((p +3/2 +it) = 0 and [p| < 5/6. Additionally,
note that m;(p) = mq(p + 3/2 +it). So changing variables using these facts gives us that

¢’ ) me(p)

- t) — _ log |t].

C(O’—f—l) E P — < log |t|
pEZ,
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Lemma 4.3.23 (GapSize). Let ¢ € R with |[¢t| > 3 and z = o + it where 1—46,/3 < 0 < 3/2.
Additionally, let p € Z,. Then we have that

|2 —p| > 6,/6.

Proof. Let p = o’ +it’ and note that since p € Z,, we have t’ € (t —5/6,¢ + 5/6). Thus, if
t > 1 we have

log [t'| <loglt + 5/6] < log|2t] = log2 + log [t] < 2log]|t|.
And otherwise if ¢ < —1 we have
log|t'| <logl|t —5/6| < log|2t] =log2 + log|t| < 2log|t].

So by taking reciprocals and multiplying through by a constant we have that ¢, < 2§,,. Now
note that since p € Z, we know that ¢/ < 1 — ¢, by Theorem (here we use the fact
that [t| > 3 to give us that [¢'| > 2). Thus,

5,/6 <08, —6,/3=1-08,/3—(1—6,)<o—0 <|z—pl.
O

Lemma 4.3.24 (LogDerivZetaUniformLogSquaredBoundStrip). There exists a constant
F € (0,1/2) such that for all t € R with |¢| > 3 one has

C—/(U +it)

< log” |t|
¢

<0<3/2 =

I
log [t]
where the implied constant is uniform in o.

Proof. Take F = E /3 where E comes from Theorem . Then we have that o > 1—4,/3.
So, we apply Lemma , which gives us that

oy mele)
C() ZZ*P

PEZ,

< log [t].

Using the reverse triangle inequality and rearranging, we have that

C(z)‘ < Z T:C([)p) +C loglt|

pezt| - |

where C' is the implied constant in Lemma . Now applying Lemma we have
that )
¢

6

C(z)‘ <3 > me(p) + C loglt].
PEZ,

Now let f(z) = ((z+3/2+it)/((3/2 + it) with p = p’ + 3/2 +it. Then if p € Z, we have

that

0=2C¢(p) =C(p" +3/2+it) = f(p)
with the same multiplicity of zero, that is m.(p) = m(p"). And also if p € 2, then

5/6 = |p—(3/2+it)| = |p'|-
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Thus we change variables to have that

6 /
Séj / Z m(p’) + C log [¢].
o i T(5/6)

Now note that f(0) =1 and for |z| < 8/9 we have

_ =432+ )] _ €(3/2)
E 30)
by Theorems and . Thus by Theorem we have that

o logt] +1og(13¢(3/2)/(3¢(3)))
p’e%zf(E:/@ e < log((8/9)/(5/6))

13¢(3/2)

(TH2) < ]

< Dlog]|t|

where D is taken to be_sufficiently large. Recall, by definition that, 6, = E/log|¢| with E
coming from Theorem . By using this fact and the above, we have that

%(z) < log” |t] + log |¢]
where the implied constant is taken to be bigger than max(6D/E,C). We know that the
RHS is bounded above by < log |t]; so the result follows. O

Theorem 4.3.11 (LogDerivZetaUniformLogSquaredBound). There exists a constant F' €
(0,1/2) such that for all ¢ € R with |¢| > 3 one has

¢ ,
= (o +it)
¢

o = < log” It]

loglt] =

where the implied constant is uniform in o.

Proof. Note that

i(d + it)

From Theorem , and applying the triangle inequality we know that

(o)

- Z |:L\U(Z)t| = Z A,i?) = §(0> <

1<n 1<n

¢
¢

1
< +C.
|s — 1]

where C' > 0 is some constant. Thus, for o > 3/2 we have that

C—/U ) C—/a
<(+t) <(>

1
< < 1+C§2+C<<1<<log2|t|.

o —

Putting this together with Lemma completes the proof. O

Theorem 4.3.12 (LogDerivZetaLogSquaredBoundSmallt). For T'> 0 and ¢’ =1—46,/3 =
1—F/logT, if |t| < T then we have that

gh—/( " +it)

c < log*(2+T).
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Proof. Note that if |¢| > 3 then from Theorem we have that

¢
(o’ +1t)
¢
Otherwise, if [¢| < 3, then from Theorem and applying the triangle inequality we
know

< log® |t| < log® T <log’(2 + 7).

¢, . 1 logT
— << — <
C( +l)_|(a/_1)+it|+0_ 7 +C
where C' > 0. Thus, we have that
¢, ., . ( logT C ) log(2+T) C 2
- < < .
c (0" +it)| < Flog2 + log 2 log(2+[t]) < Flog2 Tog? log(2+7T) <« log”(2+T)

O

From here out we closely follow our previous proof of the Medium PNT and we modify
it using our new estimate in Theorem . Recall Definition ; for fixed € > 0 and a
bump function v supported on [1/2,2] we have

0.0 = 5 [ (o) e xas

where 0 = 1+ 1/log X. Let T > 3 be a large constant to be chosen later, and we take
o' =1—06;/3=1—F/logT with F coming from Theorem . We integrate along the o
vertical line, and we pull contours accumulating the pole at s = 1 when we integrate along
the curves

o [;: 0—100too—1iT

o Iy: 0/ —iT too—iT

o Iy: 0/ —iT to o’ +iT

o Ij: 0/ +iT to o +iT

o Is: 0 +1T to o+ ioo.
Definition 4.3.10 (I1New). Let

LT N
Il(VvevaT) = Tm/ (_C(J+Zt)) M(1€)<J—|—Zt) Xot gt

Definition 4.3.11 (I5New). Let

I5<V757X7T) = 217”‘400 <_§<O—+Zt)) M<I€)<O_+Zt)Xa+ltdt

Lemma 4.3.25 (I1NewBound). We have that

|1, (v,e, X, T)| <

X
evVT
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Proof. Note that |I;(v,e, X,T)| =

4

<<[:<C

T /
1 [ (C(Hit)) M(1,) (0 + it) Xotit dt 2 (o +it)|-|M (1) (o+it)-X7 dt.

27i 5
Applying Theorem and Lemma , we have that

=T o)
X X tdt X
|Il(y,a,X7T)|<</ log” |t] - ————— dt <<—/ vidt X
| elo + it]? e Jp 2 eVT

Here we are using the fact that 10g2t grows slower than v/#, |0 + it|? > ¢2, and X7 =
X xloeX = ¢X. O

Lemma 4.3.26 (I5NewBound). We have that

X
I.(v,e, X,T)| €« —=.
| 5( )‘ E\/T

Proof. By symmetry, note that

[L(v,e, X, T)| = [I;(v,e, X, T)| = [I(v,e, X, T)].
Applying Lemma completes the proof. O
Definition 4.3.12 (I2New). Let

=1

1 7 ! )
I(v,e, X, T) = —// (C(O'OiT)) M) (oq —iT) X0 T do,,.

211

Definition 4.3.13 (I4New). Let

1 o / . )
LX) = 5 [ (=G0 i1)) ML) (00 +i7) X7 e,

Lemma 4.3.27 (I2NewBound). We have that

X
L(v,e, X, T)| €« —=.
|2( )‘ Eﬁ

Proof. Note that |I,(v,e, X, T)

/7

1 7 ’ - ) 7 ~
m/a (—i(%—m) M) (o —iT) X707 doy| < /U CC(JO—iT)‘-UV[(ls)(UO—iT)~X"0 do,.

Applying Theorem and Lemma 7 we have that

X°o X log>T [° X log> T

|15 (v,e, X, T)| <</ log” T - (o0 —d’).

A elog —iT|?

Here we are using the fact that X% < X7 = X - X¥/198X = ¢X and |0, — iT|?> > T?. Now
note that

X log® T X log®T FXlogT X
L X, T ———(c—0') = .
‘ Q(V’ga ’ )|<< <€ng (U U) ETQ 1ogX+ ET2 c /*T
Here we are using the fact that log T < T3/2, 1og2 T <« T%?2, and X/log X « X. O
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Lemma 4.3.28 (I4NewBound). We have that

X
Lv,e, X, T)| €« —=.
|4( )‘ E\/T

Proof. By symmetry, note that
|Iy(v, e, X, T)| = |I,(v,e, X, T)| = |I4(v,e, X, T)|.

Applying Lemma completes the proof. O
Definition 4.3.14 (I3New). Let

Ii(v,e, X, T) = 1/T <C/(cr’ +it)) M) (o +it) X7+t dt
3\ ey Ay — Imi - C c .

Lemma 4.3.29 (I3NewBound). We have that

leF/logT T
L(v,e, X,T)| < XUTRRTVT

Proof. Note that |I3(v,e, X, T)| =

1 ! _Q Y, 1 ’y g o’ +it !
szT< C( —Ht)) M) (o +it) X dt| < ZT

Applying Theorem and Lemma , we have that

T o’ 1-F/logT T

X X et VT dt
Li(v,e, X, T)| <« log2(2 4 T) - — dt K€ / —.
‘ 3(” € )l /T og ( + ) €|0'/ ’Lt|2 € b ‘0'/ Zt|2

ég(o—’ - z’t)‘-W(IE)(a/Ht).XU’ dt.

Here we are using the fact that this integrand is symmetric in ¢ about 0 and that log2 (2+
T) <« /T for sufficiently large T. Now note that, by Lemma , we have

1 1 1

o/ 1 it (1—0,/32 12 ~ (42221

Thus,

(e, X,1)] « VT /T dt_ X\F/esTyT /°° dt
3 » <y 9
€ 0 o (

o/ +it]2 = e 41/42)% 2

The integral on the right hand side evaluates to 217/41, which is just a constant, so the
desired result follows. O

Theorem 4.3.13 (SmoothedChebyshevPull3). We have that

V(X) = M) X+ I — Iy + I+ I, + I,
Proof. Pull contours and accumulate the pole of ¢’/¢ at s = 1. O
Theorem 4.3.14 (StrongPNT). We have

Z Aln)=z+0 (x exp(—c«logx)) .

n<x
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Proof. By Theorem E and we have that
MA)A) ' + I, — Iy + I + I, + Iy = ob(x) + O(ex log ).

Applying Theorem and Lemmas |4.3.2ﬂ, |4.3.27|, |4.3.29L |4.3.2§7 and |4.3.2d we have that

(o) = 2+ Ofex) + Olewloga) + 0 ( = )+0(/ﬁ>

evT 5

We absorb the O(ex) term into the O(exlogx) term and balance the last two terms in T'.

T ajl—F/logT\/T
= — T =ex Flogx).
i . p(v/ F'logz)

Thus,

z) =z + Olexlogz) + O ) :
Y(x) +O(exlogz) + (5exp((1/2)-\/@)>

Now we balance the last two terms in e.

T v/ logx

exlogx = = clogz = .
B ep((1/2) - /Floga) BT oxp((1/4) - \/Floga)
Thus,
Y(x)=2+0 (J: exp(—(VF/4) - \/logac)\/logx) .
Absorbing the y/logz into the exp(—(VF/4) - \/logz) completes the proof. O
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Chapter 5

Elementary Corollaries

Lemma 5.0.1 (finsum-range-eq-sum-range). For any arithmetic function f and real number

x, one has
Y fm)= > fn)
n<x n<|x],
and
Y fmy= > fn).
n<x n<[z],
Proof. Straightforward. O

Theorem 5.0.1 (chebyshev-asymptotic). One has

Zlogp =z + o(x).

p<zx

Proof. From the prime number theorem we already have

Z A(n) =z + o(x)

n<x

Z Z logp = o(x).

j>2 pi<z

so it suffices to show that

Only the terms with j < logz/log2 contribute, and each j contributes at most /xlogz to
the sum, so the left-hand side is O(,/z log® z) = o(z) as required. O

Corollary 5.0.1 (primorial-bounds). We have

[ v = exp(@+ ofx))

p<x
Proof. Exponentiate Theorem ?7. O

Theorem 5.0.2 (pi-asymp). There exists a function ¢(z) such that ¢(z) = o(1) as x — oo

and
Todt

w0 =0tet@) | o

for all « large enough.
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Proof. We have the identity

W(fﬂ)ZlO;leogw/ (> logp) at

2
pgx 2 pgt t log t

as can be proven by interchanging the sum and integral and using the fundamental theorem
of calculus. For any e, we know from Theorem ?7 that there is z, such that zp - logp =

t + O(et) for t > x_, hence for = > x,

()

(x+0(5x))+/I(t+O(st)) o)

~ logz tlog™ t

€

where the O_(1) term can depend on z, but is independent of z. One can evaluate this after
an integration by parts as

Codt
=(1 = 1
@)= (1+06) [ o +0.0)
Codt
=(1+4+0 —
1o [ o
for z large enough, giving the claim. O
Corollary 5.0.2 (pi-alt). One has
=(1 1
(@) = (1+0(1)) o

as r — Q.

Proof. An integration by parts gives
/m dt 2 /m dt
, logt logz log2 ), log’t

Vet
/ 5 = O(\/E)
2 log t

We have the crude bounds

and

and combining all this we obtain

odt T T
/ et~ Togz T 92,
> g ogr log™ z

T
=(1 1))——
(1 o(1)

and the claim then follows from Theorem . O

Let p,, denote the n'” prime.
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Proposition 5.0.1 (pn-asymptotic). One has
P, = (1+o0(1))nlogn
as n — 0o.

Proof. Use Corollary to show that n = w(p,,) ~ p,,/logp, Taking logs gives logn ~
logp, — loglogp, ~ logp,. Multiplying these gives p, ~ nlogn from which the result
follows. O

Corollary 5.0.3 (pn-pn-plus-one). We have p,, ., —p,, = o(p,,) as n — oo.
Proof. Easy consequence of preceding proposition. O

Corollary 5.0.4 (prime-between). For every ¢ > 0, there is a prime between z and (1+¢)x
for all sufficiently large x.

Proof. Use Corollary to show that 7((1 + €)x) — 7(z) goes to infinity as x — co. O
Proposition 5.0.2. We have |} _ %| <1
Proof. From Mobius inversion 1,,_; = > din u(d) and summing we have

1= ()]

d<z

z __

for any 2 > 1. Since [§] = § —¢; with 0 < ¢; <1 and ¢, = 0, we conclude that
p(d)
1> — —(r—1
> ,;C pi (x—1)
and the claim follows. O
Proposition 5.0.3 (Mobius form of prime number theorem). We have » _ u(n) = o(z).

Proof. From the Dirichlet convolution identity

p(n)logn = —>" u(d)A(n/d)

d|n

and summing we obtain

> un)logn ==Y "pu(d) Y A(m).

n<z d<zx m<xz/d
For any € > 0, we have from the prime number theorem that

> A(m) ==z/d+ O(ex/d) + O.(1)

m<z/d

(divide into cases depending on whether x/d is large or small compared to €). We conclude
that

Z w(n)logn = —xz @ + O(exlogz) 4+ O (x).

n<x d<x
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Applying () we conclude that

Zu )logn = O(exlogz) + O ().

n<x

and hence
Zu Ylogz = O(exlogz) +O€(x)+O(Z(log:rflogn)).

n<x n<x
From Stirling’s formula one has

Z(logx —logn) = O(x)

n<x

thus
Z p(n)logz = O(exlogz) + O (x)

n<x

and thus

Zu O(ex) + O(

n<x

).

log x
Sending € — 0 we obtain the claim.

Proposition 5.0.4. We have > _ A(n) = o(z).

= pu(n/d?)

Proof. From the identity

d?|n
and summing, we have
Sam= Y Y uo
n<x d<\/x n<z/d?

For any € > 0, we have from Proposition that

S un) = Oex/d?) + 0,(1)

n<z/d?

and hence on summing in d

> An) = O(ex) + O (z'/?).

n<x

Sending € — 0 we obtain the claim.

Proposition 5.0.5 (Alternate Mobius form of prime number theorem). We have ) _

o(1).
Proof. As in the proof of Theorem , we have

I—Z,u

d<z

—a #—Zuw){m

d<z d<z

}

al
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so it will suffice to show that

> {}—0)

d<z
Let N be a natural number. It suffices to show that
> ud { } = O(z/N).
d<z
if  is large enough depending on N. We can split the left-hand side as the sum of
x
Z M(d){ﬁ}
d<a/N
and
N-1
YooY ud)(@/d—)).
J=1 z/(j+1)<d<z/j

The first term is clearly O(x/N). For the second term, we can use Theorem 5.0.3 and
summation by parts (using the fact that x/d — j is monotone and bounded) to find that

>, wld)(z/d—j) =o(x)
z/(j+1)<d<z/j
for any given j, so in particular
> wd)(x/d—j) = O(x/N?)
z/(j+1)<d<z/j

for all j =1,...,N — 1 if x is large enough depending on N. Summing all the bounds, we
obtain the claim. O

5.1 Consequences of the PNT in arithmetic progres-

sions
Theorem 5.1.1 (Prime number theorem in AP). If a (¢) is a primitive residue class, then
one has
Z logp = i+o(a:).
p<zip=a (q) o(q)
Proof. This is a routine modification of the proof of Theorem ?7. O

Corollary 5.1.1 (Dirichlet’s theorem). Any primitive residue class contains an infinite
number of primes.

Proof. If this were not the case, then the sum ). _ logp would be bounded in =z,
p<az:p=a (q)

contradicting Theorem . O

5.2 Consequences of the Chebotarev density theorem

Lemma 5.2.1 (Cyclotomic Chebotarev). For any a coprime to m,

Z long:|—Cl;| Z log Np.

Np<z;Np=a (m) Np<zx
Proof. This should follow from Lemma by a Fourier expansion. O
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Chapter 6

Explicit estimates

We will try to systematically collect explicit estimates related to the prime number theorem
from the literature, and formalize them in a modular fashion. We divide such estimates into
four classes:

o Zeta function explicit estimates: bounds on the zeta function and its zeroes.

e Primary explicit estimates: those that are directly control ¥ (z) and M (z), usually via
information on the zeta function.

o Secondary explicit estimates: these are useful general-purpose estimates on functions
relating to the primes, such as bounds on the n-th prime, or estimates for the prime
counting function 7(z). These are generally derived from primary estimates and ele-
mentary arguments.

o Tertiary explicit estimates: these are bespoke applications to particular problems in
analytic number theory or combinatorics that often require secondary estimates as
input.

In this project we will state the best available zeta and primary estimates known in the
literature, and try to formalize at least some of them; state the best available secondary
estimates known in the literature, as well as various tools from passing from primary to
secondary estimates, and formalize these; and then finally formalize some tertiary estimates
as applications of the secondary ones.
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Chapter 7

Zeta function estimates

7.1 Definitions

Definition 7.1.1. p is understood to lie in the set {s: {(s) = 0}, counted with multiplicity.
We will often restrict the zeroes p to a rectangle {fRp € I,Tp € J}, for instance through

sums of the form Zmpd Iped f(p).

Definition 7.1.2. We say that the Riemann hypothesis has been verified up to height 7" if
there are no zeroes in the rectangle {p € (0.5,1),Tp € [0,T]}.

Definition 7.1.3 (Section 1.1, FKS2). We say that one has a classical zero-free region with
parameter R if zeta(s) has no zeroes in the region Re(s) > 1 —1/R xlog|Js| for J(s) > 3.

Definition 7.1.4 (Zero counting function N(T)). The number of zeroes of imaginary part
between 0 and T, counting multiplicity

Definition 7.1.5 (Riemann von Mangoldt estimate). An estimate of the form N(T) —
L log - + | < bylog T + byloglog T + by for T > 2.

27e

Definition 7.1.6 (Zero density bound). An estimate of the form N(o,T) < ¢;T?log? T +
eylog? T — Llog ;L + T| < b log T + by loglog T + by for T > 2.
7.2 The estimates of Kadiri, Lumley, and Ng

In this section we establish the primary results of [9].

7.3 The zeta function bounds of Rosser and Schoenfeld

In this section we formalize the zeta function bounds of Rosser and Schoenfeld.

Theorem 7.3.1 (Rosser—Schoenfeld Theorem 19). One has a Riemann von Mangoldt esti-
mate with parameters 0.137, 0.443, and 1.588.

Proof. O
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7.4 Approximating the Riemann zeta function

We want a good explicit estimate on

1 “ du
nzg;z ns /0 us’
for a a half-integer. As it turns out, this is the same problem as that of approximating ((s)
by asum ) _ n~°. This is one of the twof main, standard ways of approximating ((s).

The non-explicit version of the result was first proved in [§, Lemmas 1 and 2]. The proof
there uses first-order Euler-Maclaurin combined with a decomposition of || —x + 1/2 that
turns out to be equivalent to Poisson summation. The exposition in [[14, §4.7—4.11] uses
first-order Euler-Maclaurin and van de Corput’s Process B; the main idea of the latter is
Poisson summation.

There are already several explicit versions of the result in the literature. In [2], [?] and
[L2], what we have is successively sharper explicit versions of Hardy and Littlewood’s original
proof. The proof in [4, Lemma 2.10] proceeds simply by a careful estimation of the terms
in high-order Euler-Maclaurin; it does not use Poisson summation. Finally, [3] is an explicit
version of [14, §4.7-4.11]; it gives a weaker bound than [[12] or [4]. The strongest of these
results is [12].

We will give another version here, in part because we wish to relax conditions — we will
work with |Js| < 2ma rather than |Js| < a — and in part to show that one can prove an
asymptotically optimal result easily and concisely. We will use first-order Euler-Maclaurin
and Poisson summation. We assume that a is a half-integer; if one inserts the same assump-
tion into [4, Lemma 2.10], one can improve the result there, yielding an error term closer to
the one here.

For additional context, see the Zulip discussion at https://leanprover.zulipchat.
com/#narrow/channel/423402-PrimeNumberTheorem.2B/topic/Let.20us.20formalize.
20an.20appendix

Definition 7.4.1 (e). We recall that e(a) = e?™,

7.4.1 The decay of a Fourier transform

Our first objective will be to estimate the Fourier transform of ¢™°¥(, ;. In particular,
we will show that, if ¢ and b are half-integers, the Fourier cosine transform has quadratic
decay when evaluated at integers. In general, for real arguments, the Fourier transform of a
discontinuous function such as t’SH‘[avb] does not have quadratic decay.

Lemma 7.4.1 (Fourier transform of a truncated power law). Let s = o+ i1, 0 > 0, 7 € R.
Let v € R\ {0}, b>a > 7. Then

27|v|”
S i (1 0)| R A e " o)
/a t%e(vt)dt = W‘a—i—a/a 27m,g%(t)e(c,ol,(t))dt—i—/a W@(g@y(t))dt7
(7.1)

where ¢, (t) = vt — - logt.

IThe other one is the approximate functional equation.
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Proof. We write t*e(vt) = t 7e(p,(t)) and integrate by parts with u = t~7/(2mipl,(t)),
v=ce(p,(t)). Here ¢, (t) = v —71/(2nt) # 0 for t € [a,b] because t > a > |7|/(27|v|) implies
|v| > |7]/(27t). Clearly

—0

t ., s
udv = gl (t) 2mipy, (t)e(p, (t))dt = t~7e(p, (t))dt,

(ot el
du= (%w;@) - 2“(%(0)2) .

while

Lemma 7.4.2 (Total variation of a function with monotone absolute value). Let g : [a,b] —
R be continuous, with |g(¢)| non-increasing. Then g is monotone, and |g|tv = |g(a)|—|g(b)|.

Proof. Suppose g changed sign: g(a’) > 0 > g(b") or g(a’) < 0 < g(b’) for some a < o’ <
b” <b. By IVT, there would be an r € [a’, b’] such that g(r) = 0. Since |g| is non-increasing,
g(b") = 0; contradiction. So, g does not change sign: either g <0 or g > 0.

Thus, there is an e € {—1,1} such that g(t) = ¢|g(t)| for all ¢t € [a,b]. Hence, g is
monotone. Then |g| v = |g(a) — g(b)|. Since |g(a)| > |g(b)| and g(a), g(b) are either both
non-positive or non-negative, |g(a) — g(b)| = |g(a)| — |g(b)|. O

Lemma 7.4.3 (Non-stationary phase estimate). Let ¢ : [a,b] — R be C! with ¢'(t) # 0
for all ¢ € [a,b]. Let h : [a,b] — R be such that g(t) = h(t)/¢’(t) is continuous and |g(¢)| is
non-increasing. Then

o]

™

<

b
/ h(t)e(p(t))dt

Proof. Since ¢ is C1, e(p(t)) is C', and h(t)e(p(t)) = =28 _de(p(t)) everywhere. By

2mi’ (t) dt
Lemma , g is of bounded variation. Hence, we can integrate by parts:

b b b
/h<t)e<sa(t>)dt= W‘ —/ e(go(t))d(%i;(’%).

The first term on the right has absolute value < w. Again by Lemma ,

b
wo |1 jo(a)] ~ lo(e)
thd| ———— || < — ==
| etettna (5o )| < gelalee = L
We are done by alltla] | la(ell_la)| _ latall 0

Lemma 7.4.4 (A decreasing function). Let 0 >0, 7 € R, v € R\ {0}. Let b > a > QLT‘L‘.
Then, for any k > 1, f(t) = t °%]27mv — 7/t| %71 is decreasing on [a, b].

Proof. Let a <t < b. Since |Z| < 2m, we see that 2r — Z > 0, and so |27y — 7/t|F 1 =

lv| 7kt (27 — tlu)_k_l. Now we take logarithmic derivatives:
T/t 2nk + &
t(1 t) =— E—k+1)—F——=—0——¥ < —06<0
o (1) =~ + )= (k= 1T = o= TR <o <o)

since, again by % < 2m and k > 1, we have 27k + = > 0, and, as we said, 27— = > 0. O
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Lemma 7.4.5 (Estimating an integral). Let s = o +i7, 0 > 0, 7 € R. Let v € R\ {0},
b>a> L. Then

27| ”

/b tSe(vt)dt = tge@”(t))‘b PO (( A ) :

27l (t) 272 v—19)2  |jv—13

where ¢, (t) = vt — - logt and ¥ = 5

2ma”

Proof. Apply Lemma . Since ¢, (t) = v — 7/(2nt), we know by Lemma (with

k = 1) that g,(¢t) = ﬁ is decreasing on [a,b]. We know that ¢/, (t) # 0 for ¢ > a by

a> 57 and so we also know that g1 (t) is continuous for ¢t > a. Hence, by Lemma ,

27|v]?
b tfafl
— t))dt
| semetedo)

_ 1 @l 1
~ 27 ™ 2m? |y —y

since ¢,,(a) = v —1. We remember to include the factor of ¢ in front of an integral in (EI)

Since ¢,,(t) is as above and ¢/ (t) = 7/(27t?), we know by Lemma [[.4.4 (with k = 2)
that g,(t) = ti‘;ljg(lé)‘ = %% is decreasing on [a,b] we also know, as before, that g,(t)
is continuous. Hence, again by Lemma [7.4.3,

" et
/a 27ri(<p’y(t))26(@u(t))dt

1lg@l _ 1 el

< =
2t o7 2m? |y — 9

O

Lemma 7.4.6 (Estimating an sum). Let s = o+i7, 0,7 € R. Let n € Z.,. Let a,b € Z—&-%,
b>a> % Write ¢, (t) = vt — 5~ logt. Then

1ermml (—)" - oL

2,47, 2migl(t) |, om (n2 — (QLM)Z)

Proof. Since e(y,(t)) = e(vt)t~7 = (—1)"¢*7 for any half-integer ¢ and any integer v,

wwwﬁ_ewwb

2mig,(0) |, 2migl ()],

for v = +n. Clearly (—1)” = (—1)". Since ¢ (t) =v —a for a = 5,

1 3 1 1/2 1/2 —a o

2V:j:n(pl/<t) n—uo - — « a2—n2_n2_a2'
O

It is this easy step that gives us quadratic decay on n. It is just as in the proof of van
der Corput’s Process B in, say, [13, 1.6.3, Thm. 4].
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Proposition 7.4.1 (Estimating a Fourier cosine integral). Let s = o +ir, 0 > 0, 7 € R.
Let a,b € Z + %, b>a> % Write ¢ = 5—. Then, for any integer n > 1,

b _
_1\ngs e
/ t% cos 2mnt dt = ) — ]
A 2mi n? — (55)

Ry G S N ]
An? n—02 " n+9)2 n—op  n+top)

Proof. Write cos2mnt = % (e(nt)+e(—nt)). Since n > 1 and a > ‘Tl , we know that a > 7L

27n?
and so we can apply Lemma 7.4.5 with v = +n. We then apply Lemma 4.6 to combine

the boundary contributions \Z for v = 4n. O

7.4.2 Approximating zeta(s)
We start with an application of Euler-Maclaurin.

Lemma 7.4.7 (Identity for a partial sum of zeta(s) for integer b). Let b > 0, b € Z. Then,
for all s € C\ {1} with s > 0,

Sl @) o

n<b

Proof. Assume first that Rs > 1. By first-order Euler-Maclaurin,

X - /bmi%/bm({y}i)d(;)-

n>b
Here fboo ‘;—y = }fs and d (y%) gordy. Hence, by Zn<b =5 = ((s) — Zn>b# for
Rs > 1,
Sttt [ (w-3) S
e ns 1—s A y st1%Y-

Since the integral converges absolutely for f&s > 0, both sides extend holomorphically to
{s € C:Ms > 0,s # 1}; thus, the equation holds throughout that region. O

Lemma 7.4.8 (Identity for a partial sum of zeta(s)). Let b > 0, b € Z + 3. Then, for all
s € C\ {1} with Rs > 0,

Sp=cr oo [ (0 -g) 73

n<b

Proof. Assume first that &s > 1. By first-order Euler-Maclaurin and b € Z + %

> - / o[ (w-5)a()

n>b
Here fboo z—y = —111_7(: and d (yi) gordy. Hence, by Zn<b =5 = ((s) — Zn>b# for
Rs > 1,
Sttt [ (w-3) S
n<b ns 1—s A y 11 %Y

Since the integral converges absolutely for Rs > 0, both sides extend holomorphically to
{s € C:MRs > 0,s # 1}; thus, the equation holds throughout that region. O
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Lemma 7.4.9 (Estimate for a partial sum of {(s)). Let b>a > 0, b € Z+ 3. Then, for all
s € C\ {1} with 0 =Rs > 0,

Lo g o e (1)

n<a a<n<b

Proof. By Lemma , ana = anb—za<n§b, |{y} — %| g and fb ‘ysﬂl % O

Lemma 7.4.10 (Poisson summation for a partial sum of {(s)). Let a,b € R\Z, b > a > 0.
Let s € C\ {1}. Define f: R — C by f(y) = 1, 4)(y)/y°. Then

1 b —ate X ;
— = —————+ lim » (f(n)+ f(-n)).
n 1—s N—oo —

a<n<b n=t

Proof. Since a ¢ Z, Za<n<b ns = 2_nez [(n). By Poisson summation (as in [10, Thm. D.3])

> 7= Jim Z Fln) = FO) + Jim > ((m) + (=),

where we use the facts that f is in L', of bounded variation, and (by a,b ¢ Z) continuous
at every integer. Now

b dy B blfs _ alfs

AT N 1—s
O
We could prove these equations starting from Euler’s product for sin7z.
Lemma 7.4.11 (Euler/Mittag-Leffler expansion for cosec). Let z € C, z ¢ Z. Then
s 1 1 1
e ().
Sin 7wz z = z—n z+n
Proof. Let us start from the Mittag-Leffler expansion 7 cot ws = % +>, (Si sin)
Applying the trigonometric identity cotu — cot (u+ ) = cotu + tanu = 2 with
u=mz/2, and letting s = z/2, s = (2 + 1) /2, we see that
™ T 7wz 7w w(z+1)
=~ cot — — = cot ———2
sinmz 22 29T 2
1/2 1/2 1/2 1/2 1/2 1/2
:/2+Z<Z/ +z/ >_ /1 Q_Z z+1/ +z+1/
Z/ n 57’” §+n (Z+ )/ n 2 -n 2 +n
1 1 1 1 1
B ;—'_ZL: (z—2n+ z+2n> _zn: (z—(?n—l) + z+(2n—1)>
after reindexing the second sum. Regrouping terms again, we obtain our equation. O

Lemma 7.4.12 (Euler/Mittag-Leffler expansion for cosec squared). Let z € C, z ¢ Z. Then

2 e 1




Proof. Differentiate the expansion of mcot 7z term-by-term because it converges uniformly
’
on compact subsets of C\ Z. By (mcotwz) = —ﬁ and (1) = —ﬁ, we are

done. O

Lemma 7.4.13 (Estimate for an inverse cubic series). For 9 € R with 0 < |J| < 1,

1 1 1
> <<n_q9>3 + (nw)g) < T T Xe L

n

Proof. Since ﬁ + W is even, we may replace ¢ by |[#|. Then we rearrange the sum:

> 1 1 1 > 1 1
2 (<n—w>3 i <n+w|>3) LA <<n+1_m|>3 i <n+19|>3) |

We may write (n+1—[9])3, (n+[9])® as (n+ 1 — )%, (n+ 5 +1¢)3 for t = [9] — 1/2. Since
1/u? is convex, 7+ (n+1/12+t)3 reaches its maximum on [—1/2,1/2] at the endpoints.
Hence

1
(n+1/2—t

nzzl ((n+1—19)3 " <n+|§|)3> S; ("9’+(n+1)3) =2((3) - 1.

Lemma 7.4.14 (Estimate for a Fourier sum). Let s = o + i1, 0 > 0, 7 € R, with s # 1.
Let b>a >0, a,b € Z+ %, with a > % Define f : R — C by f(y) = 11, 4(y)/y°. Write
V= 5—-,9_=55. Then

2ma’ U —

O

a*g(0) _b7g(0) | (@,&)

2 24 a’tl

> (f(n) + f(=n)) =

with absolute convergence, where g(t) = =2 L for t # 0, g(0) =0, and

sin 7t

o 1 1 [9] 1
c,=12 (55 — o) + 20t (o +20@3) 1) for 940, (7.4)
’ o/6 for ¥ = 0.

Proof. By Proposition , multiplying by 2 (since e(—nt) + e(nt) = 2 cos 2mnt),
. . B a8 (_1)n+1219 b—s (_1)n+120_

F 4 fn) = o e ~ o e
L ( AN A U/ U ) (7.5)
272 O\ =02 102 n—0P  ni03)’ '

where ¥_ = 7/(2xb). Note |[J_| < || < 1. By the Lemma ?7?,

n? — z2 sinTz 2

—1)"+122 s 1
3 (1)

n

for z # 0, while > (Cnr2s >.,0=0for 2 = 0. Moreover, by Lemmas and

77/2722
F.a1d, for v £ 0,
(e ) ()
(n=9)*  (n+9)*) ~ sinfry 02)7

n
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2 (a5 * Grram) <191 (e +2®-1).

If9 =0, then ¥ (%5 + gz ) =205, 72 = 0% O
Proposition 7.4.2 (Approximation of zeta(s) by a partial sum). Let s = o + i1, 0 > 0,
T € R, with s # 1. Leta€Z+%Witha>%. Then

1 alt—

C}ﬂ
o) =X e~ = e 0 (524, (7.6

where ¥ = 55—, ¢y = 5 (5555 — =) for ¥ # 0, ¢y =0, and C, 4 is as in (@)

2ma’

Proof. Assume first that ¢ > 0. Let b € Z + 3 with b > a, and define f(y) = M By

Lemma @ and Lemma , Y

1-—s N . R S
Z% =((s) + ¢ lim Z(f(n) + f(—n)) + O* (2||> )

o
n<a n=1 ab

We apply Lemma to estimate limy_, Zgil(f(n) + f(=n)). We obtain

1 at ag) | (Cow 09 ) . (2ls]
2 e =)t Ty O (a”+1)+ 2 T C (Ub")

n<a

where ¥ = 55 and g(t) is as in Lemma , and so —%f) = cy. We let b — oo through
the half-integers, and obtain ([7.G), since b7 — 0, ¥_ — 0 and g(9_) — ¢g(0) =0 as b — oo.
Finally, the case o = 0 follows since all terms in ([.6) extend continuously to c = 0. O

Remark 7.4.1. The term cya® in (@) does not seem to have been worked out before in
the literature; the factor of ¢ in ¢y was a surprise. For the sake of comparison, let us note
that, if @ > 2, then [J] < 1/27, and so |cy| < | j9,[ = 0.04291 ... and [C, »| < |Cy 1y /0.| <
0.1760 + 0.246. While ¢, is optimal, C,, 4 need not be — but then that is irrelevant for most
applications.
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Chapter 8

Primary explicit estimates

8.1 Definitions

In this section we define the basic types of primary estimates we will work with in the
project.

Key references:

FKS1: Fiori-Kadiri-Swidninsky arXiv:2204.02588

FKS2: Fiori-Kadiri-Swidninsky arXiv:2206.12557

Definition 8.1.1 (Equation (2) of FKS2). E(z) = [¢(z) — z|/z

Definition 8.1.2 (Definition 1, FKS2). We say that E,, satisfies a classical bound with
parameters A, B, C, R, z, if for all x > x, we have

By(x) < A <lo§x)BeXp (—C <lo]g%x>1/2) |

8.2 A Lemma involving the Mobius Function

In this section we establish a lemma involving sums of the Mobius function.
Definition 8.2.1 (Q). @(x) is the number of squarefree integers < z.
Definition 8.2.2 (R). R(z) = Q(z) — x/¢(2).

Definition 8.2.3 (M). M(x) is the summatory function of the Mébius function.

Sublemma 8.2.1 (Mobius Lemma 1, initial step). For any x > 0,
Q) => "M (4/7
k
k<x

Proof. We compute

giving the claim. O
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Lemma 8.2.1 (Mobius Lemma 1). For any = > 0,

R(z) = ngxM (ﬁ) — /OxM (\/@ du. (8.1)

Proof. The equality is immediate from Theorem and exchanging the order of }_ and
x ’ﬂ2
[, as is justified by 3= |u(n)] [ " du < >, z/n? < oo)

/omM(\/@d“:[ 2 u<n>du=;u<n>lédu=x ) lﬁ?:gé)

 n<yvE

Since our sums start from 1, the sum Zk<K is empty for K = 0.
Sublemma 8.2.2 (Mobius Lemma 2 - first step). For any K < z,

Lo (V5 =g (V) 2 L v ()

%

Proof. This is just splitting the sum at K. O
Sublemma 8.2.3 (Mobius Lemma 2 - second step). For any K < z, for f(u) = M(y/z/u),
k+3 lz]+3 z

[ twdu= [ fwdu= [ fdn
K<k<z+1“k—3 K+1 K+3
Proof. This is just splitting the integral at K, since f(u) = M(\/x/u) =0 for x > u. O

Lemma 8.2.2 (Mobius Lemma 2). For any « > 0 and any integer K > 0,

o)=Y (\/;) [T ()
L () ()

Proof. We split into two cases. If K > x, the second line of (@) is empty, and the first one
equals (@), by M(t) =0 for t <1, so (@) holds.

Now suppose that K < z. Then we combine Sublemma, m and Sublemma M with
Lemma to give the claim. O

(8.2)

8.3 The estimates of Fiori, Kadiri, and Swidinsky

In this section we establish the primary results of Fiori, Kadiri, and Swidinsky [§].
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Theorem 8.3.1 (FKS Theorem 2.7). Let H, denote a verification height for RH. Let

10°/Hy <k <1,t>0, H€[1002,H,), « > 0,8 > 1,1, =0.23622, 1 + 1, < u < 1+, and

n € (ny,1/2) be fixed. Let 0 > 1/2 + d/log H,,. Then for any T > H,, one has

N(o,T) < (T—H)log T/ (2rd)*log(1+CC, (log(kT))?* (log T)*1=o)T8/30=0) /(T— H))+CCyxlog® T /27d

and

N(o,T) < 26;1 (log kT')2° (log T)5~*oT8/30-9) L CC, * log” T /27d
s

Proof. O

Definition 8.3.1 (FKS Corollary 2.9). For each oy, 04,¢;,¢, given in Table 8, we have
N(o,T) < &TP) logq<g) +é,10g° T for 0, < o < 0, with p(o) = 8/3(1 — o) and ¢(0) =
5—20.

Theorem 8.3.2 (FKS Lemma 2.1). If |N(T) — (T/27log(T/2me) + 7/8)| < R(T) then
ZU§7<V 1/7 < Bl(Uv V)
Proof. O

Theorem 8.3.3 (FKS Corollary 2.3). For each pair T}, S, in Table 1 we have, for all V' > T,
Eo<7<v 1/7 < SO + Bl(TOa V)

Proof. O

Theorem 8.3.4 (FKS Lemma 2.5). Let T, > 2 and v > 0. Assume that there exist
€1, Cq, D, q, Ty for which one has a zero density bound. Assume ¢ > 5/8 and T, < U < V.
Then sy(c,U, V) < By(o,U, V).

Proof. O
Theorem 8.3.5 (FKS Remark 2-6-a). I'(3,z) = (22 + 2(x + 1))e ®.

Proof. O
Theorem 8.3.6 (FKS Remark 2-6-b). For s > 1, one has I'(s,z) ~ 25 le ®.

Proof.

Theorem 8.3.7 (FKS Theorem 3.1). Let # > €’ and 50 < T' < x. Then E,(z) <
- 2

Z‘W|<T|xp L/p| +2log” z/T.

Proof. O

Theorem 8.3.8 (FKS Theorem 3.2). For any o € (0,1/2] and w € [0, 1] there exist M, z,,
such that for max(51,logz) < T < (z® —2)/5 and some T™ € [T,2.45T],

[W(z) — (x— Y 27/p)| < Mx/T xlog" ™z
|y|<T*

for all x > x,,.

Proof. O
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Theorem 8.3.9 (FKS Proposition 3.4). Let z > ¢° and 3logz < T < /z/3. Then
_ 2
Ey(x) <3 pla? L/p| +2log” z/T.

Proof. O

Theorem 8.3.10 (FKS Proposition 3.6). Let o; € (1/2,1) and let (7}, S;) be taken from
Table 1. Then 3 < 22~ Y2(Sy + B (T,, T)) + (] " — 2~ Y/2)B, (H,, T).

Proof. O

281

Theorem 8.3.11 (FKS equation (3.13)). X =2x%3 y<Tia<peb

Proof. O
Theorem 8.3.12 (FKS Remark 3.7). If o <1—1/Rlog H, then H, = H,.

Proof. O
Theorem 8.3.13 (FKS Proposition 3.8). Let N > 2 be an integer. If 5/8 < 0y < 02 <1,
T > Hy, then 332 < 22100t u/N B (g, H,  T)+221 770 (1—z (72~ 01>/N)zn | Bylo!
Proof. O
Theorem 8.3.14 (FKS Corollary 3.10). If 0; > 0.9 then ng < 0.0012599422—1.

Proof. O

7_H'(”)7 T)x(a2*‘71)(”’

Theorem 8.3.15 (FKS Proposition 3.11). Let 5/8 < 0, < 1,¢, = t((0y, ) = max(H, ,exp(ylogz/R))

and T > 0. Let K > 2 and consider a strictly increasing sequence (t,)% , such that ¢, = T
Then T} < 2N(op, T)a Y/R0s% /t) and TL < 2((, ' Nlog, t,) (@ VROt /| —
g VURost) fy)) 4 a1t [ty N0y, T)).

Proof. O

Theorem 8.3.16 (FKS Corollary 3.12). Let 5/8 < 04 < 1, t, = ty(04,z) = max (HG ,€exp (\ / l"%)),

T > t,. Let K > 2, A = (T/ty)"/¥, and consider (t,)X , the sequence given by t, = t \*.

Then
xf1
El =2 Z <eylx,049,K,T),
ocyer T
o,<pB<1
where
K-1 —miose; ~ Rilostg]
€T gl ~ ~ ~ €T \logto
ey(2,05, K, T) =2 e (N(og,tin) — N(og,ty)) + 2N (0, 1) —
k=1 0
and N (o, T) satisfy (ZDB) N(o,T) < N(o,T).
Proof. O
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Theorem 8.3.17 (FKS Proposition 3-14). Fix K > 2 and ¢ > 1, and set ¢, T, and o, as
functions of x defined by

logx . 2
ty =to(x) = exp ( 7 ) , T =t5, and azzl—m. (8.3)
Then, with e,(z, 04, K,T) as defined in (3.22), we have that as © — oo,
log ty)** Frosto w —1
e (x,09, K, T) = (1+ 0(1))C(Og0>t(2)0, with C = 2616%10:1”, and w; =1+ CT,
(8.4)

where ¢; is an admissible value for (ZDB) on some interval [0y, 1]. Moreover, both &,(z, 09, K, T)
eq(2,09,K,T)t3
(logtg)®

Proof. O

and are decreasing in x for x > exp(Re?).

Theorem 8.3.18 (FKS Theorem 1.1). For any z, with logz, > 1000, and all 0.9 < 0, < 1,
2 < ¢ <30, and N, K > 1 the formula e(z;) := e(zy, 09,¢, N, K) as defined in (4.1) gives
an effectively computable bound

E,(r) <e(zg) forall z > x,.
Proof. O

Theorem 8.3.19 (FKS Theorem 1.1b). Moreover, a collection of values, £(x,) computed
with well chosen parameters are provided in Table 5.

Proof. O
Theorem 8.3.20 (FKS Lemma 5.2). For all 0 < logz < 2100 we have that

Ey(z) < 2(logx)*? exp (—0.8476836+/log 7 ) .
Proof. O
Theorem 8.3.21 (FKS Lemma 5.3). For all 2100 < logz < 200000 we have that

E,(z) <9.22022(log x)3/% exp (—0.8476836\/10g x) .
Proof. O

Theorem 8.3.22 (FKS Theorem 1.2b). If logz, > 1000 then we have an admissible bound
for £, with the indicated choice of A(z,), B =3/2, C =2, and R = 5.5666305.

Proof. O

Theorem 8.3.23 (FKS1 Corollary 1.3). For all x > 2 we have E,,(z) < 121.096(log z/R)*? exp(—2\/log z/R)
with R = 5.5666305.

Proof. O
Theorem 8.3.24 (FKS1 Corollary 1.4). For all x > 2 we have E,(z) < 9.22022(log )/ exp(—0.8476836/Iog z).
Proof. TODO. O

7



8.4 Summary of results

In this section we list some papers that we plan to incorporate into this section in the future,
and list some results that have not yet been moved into dedicated paper sections.
References to add:
None yet.
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Chapter 9

Secondary explicit estimates

9.1 Definitions

In this section we define the basic types of secondary estimates we will work with in the
project. Key references:

FKS1: Fiori-Kadiri-Swidninsky arXiv:2204.02588

FKS2: Fiori-Kadiri-Swidninsky arXiv:2206.12557

Definition 9.1.1 (pi). w(z) is the number of primes less than or equal to x.

Definition 9.1.2 (li and Li). li(z) = [* {%; and Li(z) = [} 1%

logt logt*

(
(
Definition 9.1.3 (theta). 6(x) = Epgx log p where the sum is over primes p.
Definition 9.1.4 (Equation (1) of FKS2). E_(z) = |r(z) — Li(z)|/Li(z)
(

Definition 9.1.5 (Equation (2) of FKS2). Ey(z) = |0(z) — z|/x

Definition 9.1.6 (Definition 1, FKS2). We say that E, satisfies a classical bound with
parameters A, B, C, R, z, if for all x > x, we have

Ey(r) < A <lo§x>BeXp (C’ (10;0;%)1/2) |

Definition 9.1.7 (Definition 1, FKS2). We say that E, satisfies a classical bound with
parameters A, B, C, R, z, if for all x > x, we have

F(2) <A (lo]g%x>BeXp (—C’ <lo]g%x)1/2) |

9.2 The prime number bounds of Rosser and Schoenfeld

Similarly for E_.

In this section we formalize the prime number bounds of Rosser and Schoenfeld [11].

Theorem 9.2.1 (A medium version of the prime number theorem). ¥(z) = z+0(x/log” z).
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Proof. This in principle follows by establishing an analogue of Theorem , using medi-
umPNT in place of weakPNT. O

Definition 9.2.1 (Meissel-Mertens constant B). B :=lim,_,_ (Z L Joglog x)

p<z p

Definition 9.2.2 (Mertens constant E). E :=lim,_, (qu 10}%” —log x)

Sublemma 9.2.1 (The Chebyshev function is Stieltjes). The function ¥(x) = qu logp
defines a Stieltjes function (monotone and right continuous).

Proof. Trivial O
Sublemma 9.2.2 (RS-prime display before (4.13)). qu flp) = J;c {C)(Ty; dd(y).

Proof. This follows from the definition of the Stieltjes integral. O

Sublemma 9.2.3 (RS equation (4.13)). 3 _ f(p) = % — f; ﬁ(x)d%(f;g;) dy.

Proof. Follows from Sublemma and integration by parts. O
Sublemma 9.2.4 (RS equation (4.14)).

> = [ L, 200

e h,  logy log 2
flo)W(z) —x * d d  fly
J@D =) [ 4w,
ogx o dy dy "logy
Proof. Follows from Sublemma and integration by parts. O

Sublemma 9.2.5 (RS equation (4.16)).

el ik

Sublemma 9.2.6 (RS equation (4.15)).

S ) /23” fly) dy ‘L,

e logy
flo)(Hz) — = o d d, fly
@0 ) T d )
log x . dy dy logy
Proof. Follows from Sublemma and Definition . O

Sublemma 9.2.7 (RS equation (4.17)).

@) [0 dy
(z) +/2

o log X Y 10g2 Y

Proof. Follows from Sublemma applied to f(t) = 1. O
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Sublemma 9.2.8 (RS equation (4.18)).

1 d=) “9(y)(1 +logy) dy
> +/ .

—p w log z Y2 log2 y
Proof. Follows from Sublemma applied to f(t) = 1/t. O

Theorem 9.2.2 (RS equation (4.19) and Mertens’ second theorem).

leloglogx—i—B-i-M

Pz

_/“ (9(y) —y)(1 +logy) dy

zlogx

y?log”y
Proof. Follows from Sublemma applied to f(t) = 1/t. One can also use this identity
to demonstrate convergence of the limit defining B. O

Theorem 9.2.3 (RS equation (4.19) and Mertens’ first theorem).

1 Ha) —
Z ng:log:z:+E+M
x

p<x

_/” (I(y) —y) dy
2 y? '

Proof,_Follows from Sublemma applied to f(t) = logt/t. Convergence will need The-
orem P.2.1]. O

9.3 Tools from BKLNW

In this file we record the results from [[]. -

9.4 The implications of FKS2

In this file we record the implications in the paper [[7] that allow one to convert primary
bounds on E,, into secondary bounds on E,, Ej.

Remark 9.4.1 (Remark in FKS2 Section 1.1). li(z) — Li(z) = 1i(2).
Proof. This follows directly from the definitions of li and Li. O

Definition 9.4.1 (g function, FKS2 (16)). For any a,b,c,x € R we define g(a,b,c,x) :=
z%(log z)? exp(c(log z)'/?).

Sublemma 9.4.1 (FKS2 equation (17)). For any 2 < z; < x one has

O(x)—x  O(zy) —x /m 0(t)—t
- + dt.

log log tlog® t

(m(x) — Li(x)) — (w(zo) — Li(z,)) =

0

Proof. This follows from Sublemma . O
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Sublemma 9.4.2 (FKS2 Sublemma 10-1). We have

d
%g(a,bm,x) = ( alog(x)+b+ = \/log ) L(log(z))"! exp(cy/log(z)).
Proof. This follows from straightforward differentiation. O

Sublemma 9.4.3 (FKS2 Sublemma 10-2). -Lg(a,b, ¢, z) is negative when —au®+£u+b < 0,
where u = /log(z).

Proof. Clear from previous sublemma. O

Lemma 9.4.1 (FKS2 Lemma 10a). If a > 0, ¢ > 0 and b < —c?/16a, then g(a,b,c,z)
decreases with z.

Proof. We apply Lemma . There are no roots when b < —%, and the derivative is

always negative in this case. O

Lemma 9.4.2 (FKS2 Lemma 10b). For any @ > 0, ¢ > 0 and b > —c?/16a, g(a,b,c,x)
decreases with z for # > exp((Z + 5=1/< + 4ab)?).

Proof. We apply Lemma . If a > 0, there are two real roots only if % + 4ab > 0 or

24/ +dab 0

and the derivative is negative for u > 5a

equivalently b > —&,

Lemma 9.4.3 (FKS2 Lemma 10c). If ¢ > 0, g(0,b,¢,z) decreases with x for y/logz >
—2b/c.

Proof. We apply Lemma . If a = 0, it is negative when u < %b. O

Corollary 9.4.1 (FKS2 Corollary 11). If B > 1+ C?/16R then ¢(1,1 — B,C/VR,x) is
decreasing in x.

Proof. This follows from Lemma applied with a =1, b=1— B and ¢ = C/VR. O

Definition 9.4.2 (Dawson function, FKS2 (19)). The Dawson function D, : R — R is
defined by the formula D (z) := e j(;z et dt.

Remark 9.4.2 (FKS2 remark after Corollary 11). The Dawson function has a single max-
imum at x ~ 0.942, after which the function is decreasing.

Proof. The Dawson function satisfies the differential equation F'(z) + 2xF(z) = 1 from
which it follows that the second derivative satisfies F”(z) = —2F(z) — 2z(—2zF(x) + 1),
so that at every critical point (where we have F(z) = ) we have F”(z) = —1. It follows
that every positive critical value gives a local maximum, hence there is a unique such critical
value and the function decreases after it. Numerically one may verify this is near 0.9241 see

https://oeis.org/ A133841. O

Lemma 9.4.4 (FKS2 Lemma 12). Suppose that Fj satisfies an admissible classical bound
with parameters A, B, C, R, z,. Then, for all z > x,

T E,(t) 24 log x C
dt| < == , —c D, (yloga — ——
| Vel < emGannyea(-CyFEOD(Vioga )

where
m(zg, ) = max((log C170)<2B_3>/27 (log 95)<QB_3>/2)-
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Proof. Since €g ¢ mp(t) provides an admissible bound on 6(t) for all ¢ > x,, we have

’ ’ EQ,aSymp(t) _ A * —92 IOg(t)
/1;0 dt < /IO ogt)? Rg/x (log(t))B—2 exp (—C R )dt.

0
We perform the substitution u = +/log(t) and note that u?8=3 < m(z,,z) as defined in
(21). Thus the above is bounded above by

24gm(zy, ) / tog(e) exp <u2 _ CU) du.

o(t) —t
t(log(t))?

R® Tog(zo) VR
2

Then, by completing the square u? — C—\/% = (u — %) — % and doing the substitution
v=u— %, the above becomes

24, m(xy, ) Cc? Vieg(e)-577 9

— g5 PR exp(v?) dv.

Viogo)- 5%
Now we have
Vi9og(a)— 552 Viog(z)— 5%
/ exp(v?) dv < / exp(v?) dv
\% IOg@U)*% 0
C? 1 C
= xexp (4R> exp (—C’ og}éx)) D, ( log(x) — Nﬁ) .

Combining the above completes the proof. O

Theorem 9.4.1 (FKS2 Proposition 13). Suppose that A, B,C, R,z give an admissible
bound for E,,. If B > C?/8R, then Ay, B,C, R, x, give an admissible bound for E,, where

AH = A'L[)(l + Vasymp<x0))
with

LR,

log z
Vasymp(xo) = Afd,(

2/3
R )

)(ay (log )z /? + ay(log )z,

exp(C

log z
Proof. O

Theorem 9.4.2 (FKS2 Corollary 14). We have an admissible bound for E, with A =
121.0961, B = 3/2, C = 2, R = 5.5666305, z, = 2.

Proof. O

Definition 9.4.3 (mu asymptotic function, FKS2 (9)). For z,,x; > 0, we define

xylog(z) m(zy) —Li(zy)  0(xy) — g 2D (\/log(z,) — ﬁ
muasymp(xmxl) = 1 1 - +
697asymp<x1)xl Og<x0) xO/ 0g X Zo \/log x4
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Definition 9.4.4 (FKS2 Definition 5). Let z, > 2. We say a (step) function ¢, (%)
gives an admissible numerical bound for E,(z) if E,(z) < €, (%) for all > z.

Theorem 9.4.3 (FKS2 Remark 7). If

d logz (Li(a:) -

dr x

x
- Life) + ) e, 20

logx log 2,
then 1,1 (%0, 1, Ta) <ty 2(To, 1)
Proof. O

Theorem 9.4.4 (FKS2 Remark 15). If logx, > 1000 then we have an admissible bound
for E, with the indicated choice of A(z,), B =3/2, C' =2, and R = 5.5666305.

Proof. O

Theorem 9.4.5 (FKS2 Theorem 3). If B > max(3/2,1 + C?/16R), x, > 0, and one has
an admissible asymptotic bound with parameters A, B, C, x, for Ey, and

7))2)7

x, > max(zg, exp((1 +

then
E‘n’(m) < 69,asymp<x1)(1 + Masymp(xOﬂ ‘Tl))

for all > z;. In other words, we have an admissible bound with parameters (1 +
Uasymp($07$1))A,B,C,x1 fOI‘ Eﬂ_.

Proof. O

Theorem 9.4.6 (FKS2 Proposition 17). Let x > xy > 2. IF E, () < €4, 0 (7), then

O(x) —x

_EG,num(xO) < T < Ew,num(l‘O) < 80,num<x0)

where
£0mum (T0) = €4 mum (€0) + 1.00000002(xg /% + 29 + 25 %) + 0.94(2p > + 25 %/° + 2, ”1°)
Proof. O

Theorem 9.4.7 (FKS2 Lemma 19). Let x; > x, > 2, N € N, and let (b;,)Y, be a finite
partition of [zy,x;]. Then

ebi ebi+1
|/ dt| < Z Ep, num Lz(e z+1) Ll(ebf) + o )
0 “ b bipa
Proof. .
Theorem 9.4.8 (FKS2 Lemma 20). Assume z > 6.58. Then Li(xz) — 10295 is strictly
increasing and Li(z) — lozm > xlogb’ is > 0.
Proof. .

84



Theorem 9.4.9 (FKS2 Theorem 6). Let 2, > 0 be chosen such that 7(z,) and 6(z,) are
computable, and let z; > max(x,,14). Let {b,}}¥, be a finite partition of [logx,,logm],
with b; = logz, and by = logz,, and suppose that €y ., gives computable admissible
numerical bounds for z = exp(b;), for each i = 1,..., N. For z; < z, < z; logz,, we define

z, logxy m(xy) — Li(z) _ b(zo) — 2o

:u’num(‘rmxl?wQ) =

50,num(9€0)1’1 log 7o/ logx Lo
log =, =l b . ebi  ebin
BT N lexp(by) [ Li(eton) — Li(eh) + S —
Etheta,num (.1?1)331 ; e ’ bz bi+1

I
BT (i) - (22— Life) + k)

Ty log x, log z,
and for x4 > z; logx,, including the case z, = 0o, we define
zq log zq

Eé),num (Il )1’1 lOg Lo

m(xo) — Li(z) _ b(zo) — 2o

o/ log g Zo

:u’num(wmxl?xQ) =

log =,

N—1 . . ebi ebit
b. Li(ebi+1) — Li(eb —
Ee,num(%)% ;eg,num(exp( 2 ( e ie) + b; bi+1)
1

+1og331 +loglogx; —1°

Then, for all z; <z < z, we have
Eﬂ'(z) S gﬂ,num,(xlﬂx2) = E@,num(‘rl)(l + :u’n,um(‘r()axlva))'
Proof. O

Theorem 9.4.10 (FKS2 Corollary 8). Let {b/}, be a set of finite subdivisions of [log(z; ), 00),
with b] = log(z;) and b); = co. Define

67'r,num,(‘rl) = 1§52%2(71 57r,num<exp(bi)3eXp<bi+1))'
Then E_ () < &, ym(71) for all @ > 2.
Proof. O

Theorem 9.4.11 (FKS2 Corollary 21). Let B > max(2,1 + %). Let zy,z; > 0 with

x, > max(zg, exp((1+ %)2)) If E,, satisfies an admissible classical bound with parameters

Ay, B,C, R, %, then E_ satisfies an admissible classical bound with A, B, C, R, x,, where

ATI' = (1 + Vasymp(‘rO))(l + :uasymp(xm xl))Aw

for all x > x, where

logx
|E9($)| < 59,asymp(x) = A(]' + /‘Lasymp(xm l’)) exp(—C’ R )
where
1 R log x _ _
Vasymp(T0) = (5 0=)” exp(Cyf =) (@ logm)ag ™ + agogzy)ay ™)
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and

xo log zy 2D (Vlogx — %)
|Er(9) — Eg()| + — :
50,asymp(xl)x1 log To log Ty

Proof. O

:u’asymp(‘rO? .7}1) =

Theorem 9.4.12 (FKS2 Corollary 22). One has

|7(z) — Li(z)| < 9.2211z+/log z exp(—0.8476+/log x)
for all x > 2.
Proof. O

Theorem 9.4.13 (FKS2 Corollary 23). A, B,C, x, as in Table 6 give an admissible asymp-
totic bound for E_ with R = 5.5666305.

Proof. O

Theorem 9.4.14 (FKS2 Corollary 24). We have the bounds E, (z) < B(x), where B(x) is
given by Table 7.

Proof. O
Theorem 9.4.15 (FKS2 Corollary 26). One has

Im(z) — Li(z)| < 0.4298 ——

log x
for all z > 2.

Proof. O

9.5 Summary of results

Here we list some papers that we plan to incorporate into this section in the future, and list
some results that have not yet been moved into dedicated paper sections.
References to add:
Dusart: https://piyanit.nl/wp-content/uploads/2020/10/art_10.1007_s11139-016-9839-4.
pdf
PT: D. J. Platt and T. S. Trudgian, The error term in the prime number theorem, Math.
Comp. 90 (2021), no. 328, 871-881.
JY: D. R. Johnston, A. Yang, Some explicit estimates for the error term in the prime
number theorem, arXiv:2204.01980.

Theorem 9.5.1 (PT Corollary 2). One has

|7(z) — Li(z)| < 235z (log )52 exp(—0.8/log )
for all z > exp(2000).

Proof. O
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Theorem 9.5.2 (JY Corollary 1.3). One has

|m(x) — Li(z)| < 9.59z(log )°-515 exp(—0.8274+/log )

for all x > 2.

Proof. O
Theorem 9.5.3 (JY Theorem 1.4). One has

m(z) — Li(z)| < 0.028z(log z)°-80! exp(—0.18531log™® 2/ (log log 2)1/%))

for all x > 2.

Proof. O

TODO: input other results from JY

Theorem 9.5.4 (Dusart Proposition 5.4). There exists a constant X, (one may take X, =
89693) with the following property: for every real > X|;, there exists a prime p with

x<p§x(1+ 3 )
log” x

Proof. O

TODO: input other results from Dusart
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Chapter 10

Tertiary explicit estimates

10.1 The least common multiple sequence is not highly
abundant for large n

10.1.1 Problem statement and notation

Definition 10.1.1. o(n) is the sum of the divisors of n.
Definition 10.1.2. A positive integer N is called highly abundant (HA) if
o(N) > o(m)
for all positive integers m < N, where o(n) denotes the sum of the positive divisors of n.

Informally, a highly abundant number has an unusually large sum of divisors.

Definition 10.1.3. For each integer n > 1, define
L, :=1lem(1,2,...,n).
We call (L,,),~; the least common multiple sequence.

Clearly L,, has a lot of divisors, and numerical experiments for small n suggests that L,
is often highly abundant. This leads to the following question:

Original MathOverflow question. Is it true that every value in the sequence
L, =lem(1,2,...,n) is highly abundant? Equivalently,

{Ln:n21}gHA?

Somewhat surprisingly, the answer is no: not every L,, is highly abundant.

It has previously been verified in Lean that L, is highly aboundant for n < 70, 81 <
n < 96, 125 < n < 148, 169 < n < 172, and not highly abondant for all other n < 10'°.
The arguments here establish the non-highly-abundance of L,, for all n > 896832 sufficiently
large n, thus completing the determination in Lean of all n for which L,, is highly abundant.
This argument was taken from this MathOverflow answer.
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10.1.2 A general criterion using three medium primes and three
large primes

The key step in the proof is to show that, if one can find six primes p;, py, Ps, ¢4, ¢2, ¢3 obeying
a certain inequality, then one can find a competitor M < L,, to L,, with (M) > o(L,,),
which will demonstrate that L,, is not highly abundant. More precisely:

Definition 10.1.4. In the next few subsections we assume that n > 1 and that p,, ps, P53, ¢1, 92, ¢35
are primes satisfiying
Vi <py <py<p3<q <q<qgz<n

and the key criterion
[I(1+2) < (TI(+ ) (1 2y (1= mmes) gy
L1 @/~ \ &7 pi(p; +1) 8n 093 ) '

NOTE: In the Lean formalization of this argument, we index the primes from 0 to 2
rather than from 1 to 3.

Lemma 10.1.1. We have 4p;pyps < ¢1G295-
Proof. Obvious from the non-negativity of the left-hand side of () O

10.1.3 Factorisation of L, and construction of a competitor

Lemma 10.1.2 (Factorisation of L, ). There exists a positive integer L’ such that
Ly = 419245 L'
and each prime g; divides L,, exactly once and does not divide L’.

Proof. Since ¢q; < n, the prime ¢; divides L, exactly once (as ¢ > n). Hence we may
write L,, = q,¢,q3L" where L’ is the quotient obtained by removing these prime factors. By
construction, g, 4 L’ for each 1. O

Lemma 10.1.3 (Normalised divisor sum for L,). Let L’ be as in Lemma . Then

o(L,) o(L) ( 1

n , 1+ —). (10.2)
L, L J;[l q;

Proof. Use the multiplicativity of o(-) and the fact that each g; occurs to the first power in

L,. Then

3 3

o(L,) =o(L) [Tola) = o) ]](1 +a).

=1 =1

7 K3

Dividing by L,, = L’ Hle q; gives

89



Lemma 10.1.4. There exist integers m > 0 and r satisfying 0 < r < 4p,pyp5 and

419293 = 4p1papsm + 1
Proof. This is division with remainder. O
Definition 10.1.5. With m,r as above, define the competitor
M := 4p,pypsmL’.
Lemma 10.1.5 (Basic properties of M). With notation as above, we have:
1. M<L,.
2.

)*1 - (1 B 4p1p2p3)’1.

L
1< = = (1 —
414293

M 414293

Proof. The first item is by construction of the division algorithm. For the second, note that
L, = q195q3L" = (4p1papsm + 1)L > 4p;pspsmL’ = M,

since r > 0. For the third,

L, _ 4pypopsm + 1 r - <1 r )*1 _ (1 r )fl

M 4p1papsm 4p1papsm 4dp1popsm + 1

Since 0 < 7 < 4p;pyps and 4p; paps < q1G2q3, we have

r 4
< P1DP2P3

0< ,
419293 919293

SO

(1_ r )*1 - (1_ 4p1p2ps)’1.
19293 4149293

10.1.4 A sufficient condition
We give a sufficient condition for o(M) > o(L,,).

Lemma 10.1.6 (A sufficient inequality). Suppose

o(M) (1_ 4p1p2p3) s 0(Ly)
M Gz /Ly,

Then o(M) > o(L,,), and so L,, is not highly abundant.

Proof. By Lemma ,

L, 4ppops\ L
Ly (1 dnapapy
M (

414293
Hence
o(M) _ o(Ly) <1 _ 4p1p2p3>*1 5 olln) M
M h Ln quQqS Ln Ln
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Multiplying both sides by M gives

M
o(M)>o(L,)  —
Ln
and hence
o(M) = o(Ly,),
since M /L, < 1 and both sides are integers. O

Combining Lemma m with Lemma , we see that it suffices to bound o(M)/M
from below in terms of o(L")/L’:

Lemma 10.1.7 (Reduction to a lower bound for o(M)/M). If

’ 3
oM, oD (H(HM)) (1+2). (10.3)

i=1

then L, is not highly abundant.

Proof. Insert () and () into the desired inequality and compare with the assumed
bound ()7 this is a straightforward rearrangement. O

10.1.5 Conclusion of the criterion

Lemma 10.1.8 (Lower bound for o(M)/M). With notation as above,

/ 3
(J\];[) = (LL)@(”M))(”;J

Proof. By multiplicativity, we have

o(M)  o(L')yrl+pt+-+p @

’ — —v, (L))"
M L p 1+p 1+...+p p(L")

The contribution of p = p; is
14+ pt4+p2 1
(""pz—"’_'lpz) —
1+p; pi(p;i +1)
The contribution of p = 2 is
14270 oy 27F2
14214427k

where k is the largest integer such that 2 < n. A direct calculation yields

(142714 427F72) 9kt .3
1427 427k 2k8 g 7 2R3 g7
Finally, since 2¥ < n < 251 we have 2¥+3 < 8n, so
3 3
2k+3 4 = 8pn’
So the contribution from the prime 2 is at least 1+ 3/(8n).
Finally, the contribution of all other primes is at least 1. O
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We have thus completed the key step of demonstrating a sufficient criterion to establish
that L,, is not highly abundant:

Theorem 10.1.1. Let n > 1. Suppose that primes py, ps, D3, ¢, G, g5 satisfy
VN <py <py<ps<qy <qy<qgs<n
and the key criterion () Then L,, is not highly abundant.

Proof. By Lemma , the condition () holds. By Lemma, this implies

a(M) (1 B 4p1p2p3) S L)
M @93 /L

n

Applying Lemma , we obtain o(M) > o(L,,) with M < L,,, so L,, cannot be highly
abundant. O

Remark 10.1.1. Analogous arguments allow other pairs (¢, «) in place of (4,3/8), such as
(2,1/4), (6,17/36), (30,0.632... ); or even (1,0) provided more primes are used on the p-side
than the ¢-side to restore an asymptotic advantage.

10.1.6 Choice of six primes p,, g; for large n

To finish the proof we need to locate six primes py, ps, D3, ¢4, ¢y, @3 Obeying the required
inequality. Here we will rely on the prime number theorem of Dusart [5].

Lemma 10.1.9 (Choice of medium primes p;). Let n > X2. Set z := \/n. Then there exist
primes py, py, p3 with

pi§$(1+ 3 )
log” x

and p; < py < p5. Moreover, \/n < p,

Proof. Apply Theorem successively with x,z(1+ 1/ log;3 xz),z(l+1/ log3 x)?, keeping
track of the resulting primes and bounds. For n large and z = /n, we have v/n < p; as soon
as the first interval lies strictly above y/n; this can be enforced by taking n large enough. O

Lemma 10.1.10 (Choice of large primes ¢;). Let n > X2. Then there exist primes ¢q; <
(753 < qs with

1 —1
as zn(1+ )
e log3\/ﬁ

fori=1,2,3, and ¢; < gy < g5 < n.

Proof. Apply Theorem with suitable values of z slightly below n, e.g. z = n(1 +
1/ log3 \/n)7t, again keeping track of the intervals. For n large enough, these intervals lie in
(v/n,n) and contain primes ¢; with the desired ordering. O
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10.1.7 Bounding the factors in ()

Lemma 10.1.11 (Bounds for the g;-product). With p,, g; as in Lemmas IlO.l.d and llO.l.ld7
we have

(14 =

f[(ul_) gﬁ(u‘fﬁ)). (10.4)

i=1 4 =1

Proof. By Lemma [10.1.10, each g; is at least

n(l + log31ﬁ)J

for suitable indices j, so 1/¢; is bounded above by

1 i
(1 + 10g3 \/ﬁ)
n

after reindexing. Multiplying the three inequalities gives () O

Lemma 10.1.12 (Bounds for the p;-product). With p, as in Lemma 10.1.9, we have for
large n

3 1 3 .
(g ) =1 : ) (105)

L+ 24

log” v/n
Proof. By Lemma , p; < V(1 +1/log” /n)i. Hence

.
p?Sn(Hlog;ﬁ)’ and p; +1<p;(1+1/v/n) <1+ 1/v/n)p;.

From these one gets
PN
pilpi+ 1) < (14 =) (n+vn),

and hence
1 1
1) = 1\ ’
pi(p; + I+ o77m) (n+vn)
Taking 1 + - and multiplying over i = 1,2, 3 gives () O

Lemma 10.1.13 (Lower bound for the product ratio p;/q;). With p;, g; as in Lemmas
and [L0.1.10, we have

12
4(1+ ——)
4 O, 3 n
_ PPy g 0 lemvnt (10.6)

419293 n3/2

Proof. We have p; < v/n(1+ 1/log3 V), so

1

6

DP1DPaP3 < ”3/2(1 + log?’lﬁ) .

Similarly, ¢; > n(1+ 1/log® /n)™, so

—6

1
0243 = 1 (1 + 5—=)
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Combining,
12

3/2 1 \6 1
Pt s Ut s)

P1P2DP3
< —6 n3/2

019293 n3(1+ 710&;,1\/5)

This implies () O

10.1.8 Reduction to a small epsilon-inequality

Lemma 10.1.14 (Uniform bounds for large n). For all n > X2 = 896932 we have

1 1
< 0.000675 — < - —.
1og3 \/ﬁ B ’ n3/2 = 89693 n

and
1 1 1

> - —.
n++y/n — 1+1/89693 n

Proof. This is a straightforward calculus and monotonicity check: the left-hand sides are
decreasing in n for n > X2, and equality (or the claimed upper bound) holds at n = X3.
One can verify numerically or symbolically. O

Lemma 10.1.15 (Polynomial approximation of the inequality). For 0 < e < 1/896932, we

have X
(1 + 1.000675%) < (1 13.01e + 3.01£2 + 1.0153),
1=1
and
f[(1+ ° ! )(1+3 )(1 4 x 1.000675%2 >>1+336683 0.01¢2
- —& _—€ . e — U. e~
3! 1.000675% 1 + 1/89693 8 89693 =

Proof. Expand each finite product as a polynomial in €, estimate the coefficients using the
bounds in Lemma , and bound the tails by simple inequalities such as

(1+Ce)* <1+kCe + ...

for small €. All coefficients can be bounded numerically in a rigorous way; this step is a
finite computation that can be checked mechanically. O

Lemma 10.1.16 (Final polynomial comparison). For 0 < & < 1/896932, we have
1+ 3.01e + 3.01e? + 1.01e® < 1 + 3.36683 — 0.01¢2.
Proof. This is equivalent to
3.01e + 3.01e2 + 1.01€® < 3.36683¢ — 0.01¢2,

or
0 < (3.36683 — 3.01)e — (3.01 4 0.01)e2 — 1.01&3.

Factor out ¢ and use that 0 < ¢ < 1/89693% to check that the resulting quadratic in e

is nonnegative on this interval. Again, this is a finite computation that can be verified
mechanically. O
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Proposition 10.1.1 (Verification of () for large n). For_every integer n > X3 =
896932 ~ 8.04 x 10°, the primes p;, ¢; constructed in Lemmas hO.l.d and E)%l.ld satisfy the
inequality (| )

Proof. Combine Lemma 10.1.11,, Lemma , and Lemma . Then aiili Lemma

and set ¢ = 1/n. The products are bounded by the expressions in Lemma 7 and the
inequality in Lemma then ensures that () holds. O

10.1.9 Conclusion for large n

Theorem 10.1.2 (Non-highly abundant for large n). For every integer n > 896932, the
integer L, is not highly abundant.

Proof. By Proposition [L0.1.1], there exist primes p, py, D3, ¢, G2, 3 satisfying the hypotheses
of Theorem [10.1.1. Hence L,, is not highly abundant. O

10.2 Erdos problem 392

The proof here is adapted from https://www.erdosproblems.com/forum/thread/392#
post-2696 which in turn is inspired by the arguments in https://arxiv.org/abs/2503.
20170.

Definition 10.2.1. We work with (approximate) factorizations a, ... a, of a factorial n!.
Definition 10.2.2. The waste of a factorizations a ..., is defined as ) log(n/a;).

Definition 10.2.3. The balance of a factorization a; ...a, at a prime p is defined as the
number of times p divides a, ... a,, minus the number of times p divides n!.

Lemma 10.2.1. If a factorization has zero total imbalance, then it exactly factors n!.

Proof. O

Lemma 10.2.2. The waste of a factorization is equal to tlogn — logn!, where t is the
number of elements.

Proof. O

Definition 10.2.4. The score of a factorization (relative to a cutoff parameter L) is equal
to its waste, plus logp for every surplus prime p, log(n/p) for every deficit prime above L,
log L for every deficit prime below L and an additional logn if one is not in total balance.

Lemma 10.2.3. If one is in total balance, then the score is equal to the waste.

Proof. O

Sublemma 10.2.1. If there is a prime p in surplus, one can remove it without increasing
the score.

Proof. Locate a factor a; that contains the surplus prime p, then replace a; with a,;/p. O

Sublemma 10.2.2. If there is a prime p in deficit larger than L, one can remove it without
increasing the score.

Proof. Add an additional factor of p to the factorization. O

95


https://www.erdosproblems.com/forum/thread/392#post-2696
https://www.erdosproblems.com/forum/thread/392#post-2696
https://arxiv.org/abs/2503.20170
https://arxiv.org/abs/2503.20170

Sublemma 10.2.3. If there is a prime p in deficit less than L, one can remove it without
increasing the score.

Proof. Without loss of generality we may assume that one is not in the previous two situ-
ations, i.e., wlog there are no surplus primes and all primes in deficit are at most L. If all
deficit primes multiply to n or less, add that product to the factorization (this increases the
waste by at most logn, but we save a logn from now being in balance). Otherwise, greedily
multiply all primes together while staying below n until one cannot do so any further; add
this product to the factorization, increasing the waste by at most log L. O

Lemma 10.2.4. One can bring any factorization into balance without increasing the score.

Proof. Apply strong induction on the total imbalance of the factorization and use the pre-
vious three sublemmas. O

Proposition 10.2.1. Starting from any factorization f, one can find a factorization f’ in
balance whose cardinality is at most logn! plus the score of f, divided by logn.

Proof. Combine Lemma , Lemma , and Lemma . O

Definition 10.2.5. Now let M, L be additional parameters with n > L?; we also need the
minor variant |n/L| > /n.

Definition 10.2.6. We perform an initial factorization by taking the natural numbers
between n — n/M (inclusive) and n (exclusive) repeated M times, deleting those elements
that are not n/L-smooth (i.e., have a prime factor greater than or equal to n/L).

Sublemma 10.2.4. The number of elements in this initial factorization is at most n.
Proof. O
Lemma 10.2.5. The total waste in this initial factorization is at most n log ﬁ/M

Proof. O
Sublemma 10.2.5. A large prime p > n/L cannot be in surplus.

Proof. No such prime can be present in the factorization. O
Sublemma 10.2.6. A large prime p > n/L can be in deficit by at most n/p.

Proof. This is the number of times p can divide n!. O
Sublemma 10.2.7. A medium prime /n < p < n/L can be in surplus by at most M.
Proof. Routine computation using Legendre’s formula. O
Sublemma 10.2.8. A medium prime /n < p < n/L can be in deficit by at most M.

Proof. The number of times p divides a; ... a, is at least M|n/Mp| > n/p — M (note that
the removal of the non-smooth numbers does not remove any multiples of p). Meanwhile,
the number of times p divides n! is at most n/p. O

Sublemma 10.2.9. A small prime p < /n can be in surplus by at most M logn.

Proof. Routine computation using Legendre’s formula, noting that at most logn/log 2 pow-
ers of p divide any given number up to n. O
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Sublemma 10.2.10. A small prime L < p < /n can be in deficit by at most M logn.

Proof. Routine computation using Legendre’s formula, noting that at most logn/log2 pow-
ers of p divide any given number up to n. O

Sublemma 10.2.11. A tiny prime p < L can be in deficit by at most M logn + M Lx(n).

Proof. In addition to the Legendre calculations, one potentially removes factors of the form
plg with | < L and ¢ < n a prime up to M times each, with at most L copies of p removed
at each factor. O

Proposition 10.2.2. The initial score is bounded by

nlog(1—1/M)~1+ Z M logn+ Z M log® n/log 2+ Z n log 2—&-z:(M logn+MLn(n))log L.
p<n/L p<y/n n/L<p<n p p<L

Proof. Combine Lemma M Sublemma, m Sublemma, [10.2.6, Sublemma [10.2.7, Sub-
lemma, , Sublemma, , Sublemma, , and Sublemma [10.2.11], and combine
logp and log(n/p) to logn. O

Sublemma 10.2.12. If M is sufficiently large depending on ¢, then nlog(1—1/M)~! < en.
Proof. Use the fact that log(1 —1/M)~! goes to zero as M — oo. O

Sublemma 10.2.13. If L is sufficiently large depending on M, e, and n sufficiently large

depending on L, then Zp<n/L Mlogn < en.

Proof. Use the prime number theorem (or the Chebyshev bound). O

Sublemma 10.2.14. If n sufficiently large depending on M, ¢, then Zp<ﬁ M log2 n/log2 <
en.

Proof. Crude estimation. O

Lemma 10.2.6.
m(n) =o(n) asn — oco.

Proof. Given € > 0, choose a # 0 with p(a)/a < &/2 (using Hp<n(1 —1/p) — 0). For
n>a+?2, a

(n) < ¢(a)

‘n+@(a)+m(la+1)+1.

Since ¢(a)/a < e/2, for n large enough the constant terms are absorbed, giving 7(n) <
En. O

n

Sublemma 10.2.15. If n sufficiently large depending on L, ¢, then En/L<p<n "

log% < en.
Proof. Bound % by L and use the prime number theorem (or the Chebyshev bound). [
Sublemma 10.2.16. For all n > 2, one has

2nlog4

m(n) <v/n+ .
logn
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Proof. By Chebyshev’s bound, Hp<np < 4" so Zp<n logp < nlog4. The number of primes
p < \/n is trivially at most \/n. For primes p > /n, we have logp > 1 logn, hence

(m(n) — m(v/n)) - $logn < Z logp < nlog4,

Vn<p<n

giving m(n) — w(v/n) < 2482 Adding w(y/n) < v/n yields the result. O

logn
Sublemma 10.2.17. If n sufficiently large depending on M, L, e, then ZP<L(M logn +
MLn(n))logL < en.
Proof. Use the prime number theorem (or the Chebyshev bound). O

Proposition 10.2.3. The score of the initial factorization can be taken to be o(n).

Proof. Pick M large depending on ¢, then L sufficiently large depending on M, e, then n
sufficiently large depending on M, L, e, so that the bounds in Sublemma [10.2.12, Sublemma
‘10.2.15, Sublemma [10.2.14, Sublemma , and Sublemma [10.2.17 each contribute at
most (¢/5)n. Then use Proposition [10.2.2. O

Theorem 10.2.1. One can find a balanced factorization of n! with cardinality at least
n—n/logn —o(n/logn).-

Proof. Combine Proposition with Proposition and the Stirling approximation.
O

Theorem 10.2.2. One can find a factor n! into at least n/2—n/2logn—o(n/logn) numbers
of size at most n?.-

Proof. Group the factorization arising in Theorem into pairs, using Lemma . O
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