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Chapter 1

The project

The project github page is https://github.com/AlexKontorovich/PrimeNumberTheoremAnd.
The project docs page is https://alexkontorovich.github.io/PrimeNumberTheoremAnd/

docs.
The first main goal is to prove the Prime Number Theorem in Lean. (This remains

one of the outstanding problems on Wiedijk’s list of 100 theorems to formalize.) Note that
PNT has been formalized before, first by Avigad et al in Isabelle, https://arxiv.org/
abs/cs/0509025 following the Selberg / Erdos method, then by Harrison in HOL Light
https://www.cl.cam.ac.uk/$\sim$jrh13/papers/mikefest.html via Newman’s proof.
Carniero gave another formalization in Metamath of the Selberg / Erdos method: https:
//arxiv.org/abs/1608.02029, and Eberl-Paulson gave a formalization of Newman’s proof
in Isabelle: https://www.isa-afp.org/entries/Prime_Number_Theorem.html

Continuations of this project aim to extend this work to primes in progressions (Dirich-
let’s theorem), Chebotarev’s density theorem, etc etc.

There are (at least) three approaches to PNT that we may want to pursue simultaneously.
The quickest, at this stage, is likely to follow the “Euler Products” project by Michael Stoll,
which has a proof of PNT missing only the Wiener-Ikehara Tauberian theorem.

The second develops some complex analysis (residue calculus on rectangles, argument
principle, Mellin transforms), to pull contours and derive a PNT with an error term which
is stronger than any power of log savings.

The third approach, which will be the most general of the three, is to: (1) develop
the residue calculus et al, as above, (2) add the Hadamard factorization theorem, (3) use
it to prove the zero-free region for zeta via Hoffstein-Lockhart+Goldfeld-Hoffstein-Liemann
(which generalizes to higher degree L-functions), and (4) use this to prove the prime number
theorem with exp-root-log savings.

A word about the expected “rate-limiting-steps” in each of the approaches.
(*) In approach (1), I think it will be the fact that the Fourier transform is a bijection on

the Schwartz class. There is a recent PR (https://github.com/leanprover-community/
mathlib4/pull/9773) with David Loeffler and Heather Macbeth making the first steps in
that direction, just computing the (Frechet) derivative of the Fourier transform. One will
need to iterate on that to get arbitrary derivatives, to conclude that the transform of a
Schwartz function is Schwartz. Then to get the bijection, we need an inversion formula. We
can derive Fourier inversion *from* Mellin inversion! So it seems that the most important
thing to start is Perron’s formula.

(*) In approach (2), there are two rate-limiting-steps, neither too serious (in my esti-
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mation). The first is how to handle meromorphic functions on rectangles. Perhaps in this
project, it should not be done in any generality, but on a case by case basis. There are
two simple poles whose residues need to be computed in the proof of the Perron formula,
and one simple pole in the log-derivative of zeta, nothing too complicated, and maybe we
shouldn’t get bogged down in the general case. The other is the fact that the 𝜖-smoothed
Chebyshev function differs from the unsmoothed by 𝜖𝑋 (and not 𝜖𝑋 log𝑋, as follows from
a trivial bound). This needs a Brun-Titchmarsh type theorem, perhaps can be done even
more easily in this case with a Selberg sieve, on which there is (partial?) progress in Mathlib.

(*) In approach (3), it’s obviously the Hadamard factorization, which needs quite a lot of
nontrivial mathematics. (But after that, the math is not hard, on top of things in approach
(2) – and if we’re getting the strong error term, we can afford to lose log𝑋 in the Chebyshev
discussion above...).
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Chapter 2

First approach: Wiener-Ikehara
Tauberian theorem

2.1 A Fourier-analytic proof of the Wiener-Ikehara the-
orem

The Fourier transform of an absolutely integrable function 𝜓 ∶ R → C is defined by the
formula

̂𝜓(𝑢) ∶= ∫
R
𝑒(−𝑡𝑢)𝜓(𝑡) 𝑑𝑡

where 𝑒(𝜃) ∶= 𝑒2𝜋𝑖𝜃.
Let 𝑓 ∶ N → C be an arithmetic function such that ∑∞

𝑛=1
|𝑓(𝑛)|
𝑛𝜎 < ∞ for all 𝜎 > 1. Then

the Dirichlet series
𝐹(𝑠) ∶=

∞
∑
𝑛=1

𝑓(𝑛)
𝑛𝑠

is absolutely convergent for 𝜎 > 1.
Lemma 2.1.1 (first-fourier). If 𝜓 ∶ R → C is integrable and 𝑥 > 0, then for any 𝜎 > 1

∞
∑
𝑛=1

𝑓(𝑛)
𝑛𝜎

̂𝜓( 1
2𝜋 log 𝑛

𝑥) = ∫
R
𝐹(𝜎 + 𝑖𝑡)𝜓(𝑡)𝑥𝑖𝑡 𝑑𝑡.

Proof. By the definition of the Fourier transform, the left-hand side expands as
∞
∑
𝑛=1

∫
R

𝑓(𝑛)
𝑛𝜎 𝜓(𝑡)𝑒(− 1

2𝜋 𝑡 log 𝑛
𝑥) 𝑑𝑡

while the right-hand side expands as

∫
R

∞
∑
𝑛=1

𝑓(𝑛)
𝑛𝜎+𝑖𝑡𝜓(𝑡)𝑥𝑖𝑡 𝑑𝑡.

Since
𝑓(𝑛)
𝑛𝜎 𝜓(𝑡)𝑒(− 1

2𝜋 𝑡 log 𝑛
𝑥) =

𝑓(𝑛)
𝑛𝜎+𝑖𝑡𝜓(𝑡)𝑥𝑖𝑡

the claim then follows from Fubini’s theorem.
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Lemma 2.1.2 (second-fourier). If 𝜓 ∶ R → C is continuous and compactly supported and
𝑥 > 0, then for any 𝜎 > 1

∫
∞

− log𝑥
𝑒−𝑢(𝜎−1) ̂𝜓( 𝑢

2𝜋 ) 𝑑𝑢 = 𝑥𝜎−1 ∫
R

1
𝜎 + 𝑖𝑡 − 1𝜓(𝑡)𝑥

𝑖𝑡 𝑑𝑡.

Proof. The left-hand side expands as

∫∞
− log𝑥 ∫R 𝑒−𝑢(𝜎−1)𝜓(𝑡)𝑒(− 𝑡𝑢

2𝜋 ) 𝑑𝑡 𝑑𝑢
? = 𝑥𝜎−1 ∫R

1
𝜎+𝑖𝑡−1𝜓(𝑡)𝑥𝑖𝑡 𝑑𝑡

so by Fubini’s theorem it suffices to verify the identity

∫
∞

− log𝑥
𝑒−𝑢(𝜎−1)𝑒(− 𝑡𝑢

2𝜋 ) 𝑑𝑢 = ∫
∞

− log𝑥
𝑒(𝑖𝑡−𝜎+1)𝑢 𝑑𝑢

= 1
𝑖𝑡 − 𝜎 + 1𝑒

(𝑖𝑡−𝜎+1)𝑢 ∣
∞

− log𝑥

= 𝑥𝜎−1 1
𝜎 + 𝑖𝑡 − 1𝑥

𝑖𝑡

Now let 𝐴 ∈ C, and suppose that there is a continuous function 𝐺(𝑠) defined on Re𝑠 ≥
1 such that 𝐺(𝑠) = 𝐹(𝑠) − 𝐴

𝑠−1 whenever Re𝑠 > 1. We also make the Chebyshev-type
hypothesis

∑
𝑛≤𝑥

|𝑓(𝑛)| ≪ 𝑥 (2.1)

for all 𝑥 ≥ 1 (this hypothesis is not strictly necessary, but simplifies the arguments and can
be obtained fairly easily in applications).

Lemma 2.1.3 (Preliminary decay bound I). If 𝜓 ∶ R → C is absolutely integrable then

| ̂𝜓(𝑢)| ≤ ‖𝜓‖1
for all 𝑢 ∈ R. where 𝐶 is an absolute constant.

Proof. Immediate from the triangle inequality.

Lemma 2.1.4 (Preliminary decay bound II). If 𝜓 ∶ R → C is absolutely integrable and of
bounded variation, then

| ̂𝜓(𝑢)| ≤ ‖𝜓‖𝑇𝑉 /2𝜋|𝑢|
for all non-zero 𝑢 ∈ R.

Proof. By Lebesgue–Stiejtes integration by parts we have

2𝜋𝑖𝑢 ̂𝜓(𝑢) = ∫
R
𝑒(−𝑡𝑢)𝑑𝜓(𝑡)

and the claim then follows from the triangle inequality.
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Lemma 2.1.5 (Preliminary decay bound III). If 𝜓 ∶ R → C is absolutely integrable,
absolutely continuous, and 𝜓′ is of bounded variation, then

| ̂𝜓(𝑢)| ≤ ‖𝜓′‖𝑇𝑉 /(2𝜋|𝑢|)2

for all non-zero 𝑢 ∈ R.

Proof. Should follow from previous lemma.

Lemma 2.1.6 (Decay bound, alternate form). If 𝜓 ∶ R → C is absolutely integrable,
absolutely continuous, and 𝜓′ is of bounded variation, then

| ̂𝜓(𝑢)| ≤ (‖𝜓‖1 + ‖𝜓′‖𝑇𝑉 /(2𝜋)2)/(1 + |𝑢|2)

for all 𝑢 ∈ R.

Proof. Should follow from previous lemmas.

Lemma 2.1.7 (Decay bounds). If 𝜓 ∶ R → C is 𝐶2 and obeys the bounds

|𝜓(𝑡)|, |𝜓″(𝑡)| ≤ 𝐴/(1 + |𝑡|2)

for all 𝑡 ∈ R, then
| ̂𝜓(𝑢)| ≤ 𝐶𝐴/(1 + |𝑢|2)

for all 𝑢 ∈ R, where 𝐶 is an absolute constant.

Proof. From two integration by parts we obtain the identity

(1 + 𝑢2) ̂𝜓(𝑢) = ∫
R
(𝜓(𝑡) − 𝑢

4𝜋2𝜓″(𝑡))𝑒(−𝑡𝑢) 𝑑𝑡.

Now apply the triangle inequality and the identity ∫R
𝑑𝑡

1+𝑡2 𝑑𝑡 = 𝜋 to obtain the claim with
𝐶 = 𝜋 + 1/4𝜋.
Lemma 2.1.8 (Limiting Fourier identity). If 𝜓 ∶ R → C is 𝐶2 and compactly supported
and 𝑥 ≥ 1, then

∞
∑
𝑛=1

𝑓(𝑛)
𝑛

̂𝜓( 1
2𝜋 log 𝑛

𝑥) − 𝐴∫
∞

− log𝑥
̂𝜓( 𝑢
2𝜋 ) 𝑑𝑢 = ∫

R
𝐺(1 + 𝑖𝑡)𝜓(𝑡)𝑥𝑖𝑡 𝑑𝑡.

Proof. By Lemma 2.1.1 and Lemma 2.1.2, we know that for any 𝜎 > 1, we have
∞
∑
𝑛=1

𝑓(𝑛)
𝑛𝜎

̂𝜓( 1
2𝜋 log 𝑛

𝑥) − 𝐴𝑥1−𝜎 ∫
∞

− log𝑥
𝑒−𝑢(𝜎−1) ̂𝜓( 𝑢

2𝜋 ) 𝑑𝑢 = ∫
R
𝐺(𝜎 + 𝑖𝑡)𝜓(𝑡)𝑥𝑖𝑡 𝑑𝑡.

Now take limits as 𝜎 → 1 using dominated convergence together with (2.1) and Lemma
2.1.7 to obtain the result.

Corollary 2.1.1 (Corollary of limiting identity). With the hypotheses as above, we have
∞
∑
𝑛=1

𝑓(𝑛)
𝑛

̂𝜓( 1
2𝜋 log 𝑛

𝑥) = 𝐴∫
∞

−∞
̂𝜓( 𝑢
2𝜋 ) 𝑑𝑢 + 𝑜(1)

as 𝑥 → ∞.
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Proof. Immediate from the Riemann-Lebesgue lemma, and also noting that ∫− log𝑥
−∞

̂𝜓( 𝑢
2𝜋 ) 𝑑𝑢 =

𝑜(1).
Lemma 2.1.9 (Smooth Urysohn lemma). If 𝐼 is a closed interval contained in an open
interval 𝐽 , then there exists a smooth function Ψ ∶ R → R with 1𝐼 ≤ Ψ ≤ 1𝐽 .
Proof. A standard analysis lemma, which can be proven by convolving 1𝐾 with a smooth
approximation to the identity for some interval 𝐾 between 𝐼 and 𝐽 . Note that we have
“SmoothBumpFunction”s on smooth manifolds in Mathlib, so this shouldn’t be too hard...

Lemma 2.1.10 (Limiting identity for Schwartz functions). The previous corollary also
holds for functions 𝜓 that are assumed to be in the Schwartz class, as opposed to being 𝐶2

and compactly supported.

Proof. For any 𝑅 > 1, one can use a smooth cutoff function (provided by Lemma 2.1.9 to
write 𝜓 = 𝜓≤𝑅 + 𝜓>𝑅, where 𝜓≤𝑅 is 𝐶2 (in fact smooth) and compactly supported (on
[−𝑅,𝑅]), and 𝜓>𝑅 obeys bounds of the form

|𝜓>𝑅(𝑡)|, |𝜓″
>𝑅(𝑡)| ≪ 𝑅−1/(1 + |𝑡|2)

where the implied constants depend on 𝜓. By Lemma 2.1.7 we then have

̂𝜓>𝑅(𝑢) ≪ 𝑅−1/(1 + |𝑢|2).

Using this and (2.1) one can show that
∞
∑
𝑛=1

𝑓(𝑛)
𝑛

̂𝜓>𝑅(
1
2𝜋 log 𝑛

𝑥),𝐴∫
∞

−∞
̂𝜓>𝑅(

𝑢
2𝜋 ) 𝑑𝑢 ≪ 𝑅−1

(with implied constants also depending on 𝐴), while from Lemma 2.1.1 one has
∞
∑
𝑛=1

𝑓(𝑛)
𝑛

̂𝜓≤𝑅(
1
2𝜋 log 𝑛

𝑥) = 𝐴∫
∞

−∞
̂𝜓≤𝑅(

𝑢
2𝜋 ) 𝑑𝑢 + 𝑜(1).

Combining the two estimates and letting 𝑅 be large, we obtain the claim.

Lemma 2.1.11 (Bijectivity of Fourier transform). The Fourier transform is a bijection on
the Schwartz class. [Note: only surjectivity is actually used.]

Proof. This is a standard result in Fourier analysis. It can be proved here by appealing to
Mellin inversion, Theorem ??. In particular, given 𝑓 in the Schwartz class, let 𝐹 ∶ R+ →
C ∶ 𝑥 ↦ 𝑓(log𝑥) be a function in the “Mellin space”; then the Mellin transform of 𝐹 on
the imaginary axis 𝑠 = 𝑖𝑡 is the Fourier transform of 𝑓 . The Mellin inversion theorem gives
Fourier inversion.

Corollary 2.1.2 (Smoothed Wiener-Ikehara). If Ψ ∶ (0,∞) → C is smooth and compactly
supported away from the origin, then,

∞
∑
𝑛=1

𝑓(𝑛)Ψ(𝑛𝑥) = 𝐴𝑥∫
∞

0
Ψ(𝑦) 𝑑𝑦 + 𝑜(𝑥)

as 𝑥 → ∞.
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Proof. By Lemma 2.1.11, we can write

𝑦Ψ(𝑦) = ̂𝜓( 1
2𝜋 log 𝑦)

for all 𝑦 > 0 and some Schwartz function 𝜓. Making this substitution, the claim is then
equivalent after standard manipulations to

∞
∑
𝑛=1

𝑓(𝑛)
𝑛

̂𝜓( 1
2𝜋 log 𝑛

𝑥) = 𝐴∫
∞

−∞
̂𝜓( 𝑢
2𝜋 ) 𝑑𝑢 + 𝑜(1)

and the claim follows from Lemma 2.1.10.

Now we add the hypothesis that 𝑓(𝑛) ≥ 0 for all 𝑛.
Proposition 2.1.1 (Wiener-Ikehara in an interval). For any closed interval 𝐼 ⊂ (0,+∞),
we have ∞

∑
𝑛=1

𝑓(𝑛)1𝐼(
𝑛
𝑥) = 𝐴𝑥|𝐼| + 𝑜(𝑥).

Proof. Use Lemma 2.1.9 to bound 1𝐼 above and below by smooth compactly supported
functions whose integral is close to the measure of |𝐼|, and use the non-negativity of 𝑓 .
Corollary 2.1.3 (Wiener-Ikehara Theorem (1)). We have

∑
𝑛≤𝑥

𝑓(𝑛) = 𝐴𝑥 + 𝑜(𝑥).

Proof. Apply the preceding proposition with 𝐼 = [𝜀, 1] and then send 𝜀 to zero (using (2.1)
to control the error).

2.2 Weak PNT
Theorem 2.2.1 (WeakPNT). We have

∑
𝑛≤𝑥

Λ(𝑛) = 𝑥 + 𝑜(𝑥).

Proof. Already done by Stoll, assuming Wiener-Ikehara.

2.3 Removing the Chebyshev hypothesis
In this section we do *not* assume the bound (2.1), but instead derive it from the other
hypotheses.

Lemma 2.3.1 (limiting-fourier-variant). If 𝜓 ∶ R → C is 𝐶2 and compactly supported with
𝑓 and ̂𝜓 non-negative, and 0 < 𝑥, then

∞
∑
𝑛=1

𝑓(𝑛)
𝑛

̂𝜓( 1
2𝜋 log 𝑛

𝑥) − 𝐴∫
∞

− log𝑥
̂𝜓( 𝑢
2𝜋 ) 𝑑𝑢 = ∫

R
𝐺(1 + 𝑖𝑡)𝜓(𝑡)𝑥𝑖𝑡 𝑑𝑡.
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Proof. Repeat the proof of Lemma 2.3.1, but use monotone convergence instead of dom-
inated convergence. (The proof should be simpler, as one no longer needs to establish
domination for the sum.)

Corollary 2.3.1 (crude-upper-bound). If 𝜓 ∶ R → C is 𝐶2 and compactly supported with
𝑓 and ̂𝜓 non-negative, then there exists a constant 𝐵 such that

|
∞
∑
𝑛=1

𝑓(𝑛)
𝑛

̂𝜓( 1
2𝜋 log 𝑛

𝑥)| ≤ 𝐵

for all 𝑥 > 0.
Proof. This readily follows from the previous lemma and the triangle inequality.

Corollary 2.3.2 (auto-cheby). One has

∑
𝑛≤𝑥

𝑓(𝑛) = 𝑂(𝑥)

for all 𝑥 ≥ 1.
Proof. By applying Corollary 2.3.1 for a specific compactly supported function 𝜓, one can
obtain a bound of the form ∑(1−𝜀)𝑥<𝑛≤𝑥 𝑓(𝑛) = 𝑂(𝑥) for all 𝑥 and some absolute constant
𝜀 (which can be made explicit).

If 𝐶 is a sufficiently large constant, the claim |∑𝑛≤𝑥 𝑓(𝑛)| ≤ 𝐶𝑥 can now be proven
by strong induction on 𝑥, as the claim for (1 − 𝜀)𝑥 implies the claim for 𝑥 by the triangle
inequality (and the claim is trivial for 𝑥 < 1).
Theorem 2.3.1 (Wiener-Ikehara Theorem (2)). We have

∑
𝑛≤𝑥

𝑓(𝑛) = 𝐴𝑥 + 𝑜(𝑥).

Proof. Use Corollary 2.3.2 to remove the Chebyshev hypothesis in Theorem 2.1.3.

2.4 The prime number theorem in arithmetic progres-
sions

Lemma 2.4.1 (WeakPNT-character). If 𝑞 ≥ 1 and 𝑎 is coprime to 𝑞, and Re𝑠 > 1, we have

∑
𝑛∶𝑛=𝑎 (𝑞)

Λ(𝑛)
𝑛𝑠 = − 1

𝜑(𝑞) ∑
𝜒 (𝑞)

𝜒(𝑎)𝐿
′(𝑠, 𝜒)

𝐿(𝑠, 𝜒) .

Proof. From the Fourier inversion formula on the multiplicative group (Z/𝑞Z)×, we have

1𝑛=𝑎 (𝑞) =
𝜑(𝑞)
𝑞 ∑

𝜒 (𝑞)
𝜒(𝑎)𝜒(𝑛).

On the other hand, from standard facts about L-series we have for each character 𝜒 that

∑
𝑛

Λ(𝑛)𝜒(𝑛)
𝑛𝑠 = −𝐿′(𝑠, 𝜒)

𝐿(𝑠, 𝜒) .

Combining these two facts, we obtain the claim.

8



Proposition 2.4.1 (WeakPNT-AP-prelim). If 𝑞 ≥ 1 and 𝑎 is coprime to 𝑞, the Dirichlet
series ∑𝑛≤𝑥∶𝑛=𝑎 (𝑞)

Λ(𝑛)
𝑛𝑠 converges for Re(𝑠) > 1 to 1

𝜑(𝑞)
1

𝑠−1 +𝐺(𝑠) where 𝐺 has a continuous
extension to Re(𝑠) = 1.
Proof. We expand out the left-hand side using Lemma 2.4.1. The contribution of the non-
principal characters 𝜒 extend continuously to Re(𝑠) = 1 thanks to the non-vanishing of
𝐿(𝑠, 𝜒) on this line (which should follow from another component of this project), so it
suffices to show that for the principal character 𝜒0, that

−𝐿′(𝑠, 𝜒0)
𝐿(𝑠, 𝜒0)

− 1
𝑠 − 1

also extends continuously here. But we already know that

−𝜁′(𝑠)
𝜁(𝑠) − 1

𝑠 − 1
extends, and from Euler product machinery one has the identity

𝐿′(𝑠, 𝜒0)
𝐿(𝑠, 𝜒0)

= 𝜁′(𝑠)
𝜁(𝑠) +∑

𝑝|𝑞

log 𝑝
𝑝𝑠 − 1.

Since there are only finitely many primes dividing 𝑞, and each summand log𝑝
𝑝𝑠−1 extends

continuously, the claim follows.

Theorem 2.4.1 (WeakPNT-AP). If 𝑞 ≥ 1 and 𝑎 is coprime to 𝑞, we have

∑
𝑛≤𝑥∶𝑛=𝑎 (𝑞)

Λ(𝑛) = 𝑥
𝜑(𝑞) + 𝑜(𝑥).

Proof. Apply Theorem 2.1.3 (or Theorem 2.3.1 to avoid checking the Chebyshev condition)
using Proposition 2.4.1.

2.5 The Chebotarev density theorem: the case of cyclo-
tomic extensions

In this section, 𝐾 is a number field, 𝐿 = 𝐾(𝜇𝑚) for some natural number 𝑚, and 𝐺 =
𝐺𝑎𝑙(𝐾/𝐿).

The goal here is to prove the Chebotarev density theorem for the case of cyclotomic
extensions.

Lemma 2.5.1 (Dedekind-factor). We have

𝜁𝐿(𝑠) = ∏
𝜒

𝐿(𝜒, 𝑠)

forℜ(𝑠) > 1, where 𝜒 runs over homomorphisms from 𝐺 to C× and 𝐿 is the Artin 𝐿-function.
Proof. See Propositions 7.1.16, 7.1.19 of https://www.math.ucla.edu/~sharifi/algnum.
pdf.

Lemma 2.5.2 (Simple pole). 𝜁𝐿 has a simple pole at 𝑠 = 1.
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Proof. See Theorem 7.1.12 of https://www.math.ucla.edu/~sharifi/algnum.pdf.

Lemma 2.5.3 (Dedekind-nonvanishing). For any non-principal character 𝜒 of 𝐺𝑎𝑙(𝐾/𝐿),
𝐿(𝜒, 𝑠) does not vanish for ℜ(𝑠) = 1.
Proof. For 𝑠 = 1, this will follow from Lemmas 2.5.1, 2.5.2. For the rest of the line, one
should be able to adapt the arguments for the Dirichet L-function.

2.6 The Chebotarev density theorem: the case of abelian
extensions

(Use the arguments in Theorem 7.2.2 of https://www.math.ucla.edu/~sharifi/algnum.
pdf to extend the previous results to abelian extensions (actually just cyclic extensions
would suffice))

2.7 The Chebotarev density theorem: the general case
(Use the arguments in Theorem 7.2.2 of https://www.math.ucla.edu/~sharifi/algnum.
pdf to extend the previous results to arbitrary extensions

Lemma 2.7.1 (PNT for one character). For any non-principal character 𝜒 of 𝐺𝑎𝑙(𝐾/𝐿),

∑
𝑁𝔭≤𝑥

𝜒(𝔭) log𝑁𝔭 = 𝑜(𝑥).

Proof. This should follow from Lemma 2.5.3 and the arguments for the Dirichlet L-function.
(It may be more convenient to work with a von Mangoldt type function instead of log𝑁𝔭).
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Chapter 3

Second approach

3.1 Residue calculus on rectangles
This files gathers definitions and basic properties about rectangles.

The border of a rectangle is the union of its four sides.

Definition 3.1.1 (RectangleBorder). A Rectangle’s border, given corners 𝑧 and 𝑤 is the
union of the four sides.

Definition 3.1.2 (RectangleIntegral). A RectangleIntegral of a function 𝑓 is one over a
rectangle determined by 𝑧 and 𝑤 in C. We will sometimes denote it by ∫𝑤

𝑧 𝑓 . (There is also
a primed version, which is 1/(2𝜋𝑖) times the original.)

Definition 3.1.3 (UpperUIntegral). An UpperUIntegral of a function 𝑓 comes from 𝜎+𝑖∞
down to 𝜎 + 𝑖𝑇 , over to 𝜎′ + 𝑖𝑇 , and back up to 𝜎′ + 𝑖∞.

Definition 3.1.4 (LowerUIntegral). A LowerUIntegral of a function 𝑓 comes from 𝜎 − 𝑖∞
up to 𝜎 − 𝑖𝑇 , over to 𝜎′ − 𝑖𝑇 , and back down to 𝜎′ − 𝑖∞.

It is very convenient to define integrals along vertical lines in the complex plane, as
follows.

Definition 3.1.5 (VerticalIntegral). Let 𝑓 be a function from C to C, and let 𝜎 be a real
number. Then we define

∫
(𝜎)

𝑓(𝑠)𝑑𝑠 = ∫
𝜎+𝑖∞

𝜎−𝑖∞
𝑓(𝑠)𝑑𝑠.

We also have a version with a factor of 1/(2𝜋𝑖).
Lemma 3.1.1 (DiffVertRect-eq-UpperLowerUs). The difference of two vertical integrals
and a rectangle is the difference of an upper and a lower U integrals.

Proof. Follows directly from the definitions.

Theorem 3.1.1 (existsDifferentiableOn-of-bddAbove). If 𝑓 is differentiable on a set 𝑠 ex-
cept at 𝑐 ∈ 𝑠, and 𝑓 is bounded above on 𝑠 ∖ {𝑐}, then there exists a differentiable function
𝑔 on 𝑠 such that 𝑓 and 𝑔 agree on 𝑠 ∖ {𝑐}.
Proof. This is the Riemann Removable Singularity Theorem, slightly rephrased from what’s
in Mathlib. (We don’t care what the function 𝑔 is, just that it’s holomorphic.)
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Theorem 3.1.2 (HolomorphicOn.vanishesOnRectangle). If 𝑓 is holomorphic on a rectangle
𝑧 and 𝑤, then the integral of 𝑓 over the rectangle with corners 𝑧 and 𝑤 is 0.
Proof. This is in a Mathlib PR.

The next lemma allows to zoom a big rectangle down to a small square, centered at a
pole.

Lemma 3.1.2 (RectanglePullToNhdOfPole). If 𝑓 is holomorphic on a rectangle 𝑧 and 𝑤
except at a point 𝑝, then the integral of 𝑓 over the rectangle with corners 𝑧 and 𝑤 is the
same as the integral of 𝑓 over a small square centered at 𝑝.
Proof. Chop the big rectangle with two vertical cuts and two horizontal cuts into smaller
rectangles, the middle one being the desired square. The integral over each of the outer
rectangles vanishes, since 𝑓 is holomorphic there. (The constant 𝑐 being “small enough”
here just means that the inner square is strictly contained in the big rectangle.)

Lemma 3.1.3 (ResidueTheoremAtOrigin). The rectangle (square) integral of 𝑓(𝑠) = 1/𝑠
with corners −1 − 𝑖 and 1 + 𝑖 is equal to 2𝜋𝑖.
Proof. This is a special case of the more general result above.

Lemma 3.1.4 (ResidueTheoremOnRectangleWithSimplePole). Suppose that 𝑓 is a holo-
morphic function on a rectangle, except for a simple pole at 𝑝. By the latter, we mean that
there is a function 𝑔 holomorphic on the rectangle such that, 𝑓 = 𝑔 + 𝐴/(𝑠 − 𝑝) for some
𝐴 ∈ C. Then the integral of 𝑓 over the rectangle is 𝐴.

Proof. Replace 𝑓 with 𝑔 + 𝐴/(𝑠 − 𝑝) in the integral. The integral of 𝑔 vanishes by Lemma
3.1.2. To evaluate the integral of 1/(𝑠 − 𝑝), pull everything to a square about the origin
using Lemma 3.1.2, and rescale by 𝑐; what remains is handled by Lemma 3.1.3.

3.2 Perron Formula
In this section, we prove the Perron formula, which plays a key role in our proof of Mellin
inversion.

The following is preparatory material used in the proof of the Perron formula, see Lemma
3.2.16.

Lemma 3.2.1 (zeroTendstoDiff). If the limit of 0 is 𝐿1 − 𝐿2, then 𝐿1 = 𝐿2.

Proof. Obvious.

Lemma 3.2.2 (RectangleIntegral-tendsTo-VerticalIntegral). Let 𝜎, 𝜎′ ∈ R, and 𝑓 ∶ C → C
such that the vertical integrals ∫(𝜎) 𝑓(𝑠)𝑑𝑠 and ∫(𝜎′) 𝑓(𝑠)𝑑𝑠 exist and the horizontal integral

∫𝜎′

(𝜎) 𝑓(𝑥 + 𝑦𝑖)𝑑𝑥 vanishes as 𝑦 → ±∞. Then the limit of rectangle integrals

lim
𝑇→∞

∫
𝜎′+𝑖𝑇

𝜎−𝑖𝑇
𝑓(𝑠)𝑑𝑠 = ∫

(𝜎′)
𝑓(𝑠)𝑑𝑠 −∫

(𝜎)
𝑓(𝑠)𝑑𝑠.

Proof. Almost by definition.
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Lemma 3.2.3 (RectangleIntegral-tendsTo-UpperU). Let 𝜎, 𝜎′ ∈ R, and 𝑓 ∶ C → C such
that the vertical integrals ∫(𝜎) 𝑓(𝑠)𝑑𝑠 and ∫(𝜎′) 𝑓(𝑠)𝑑𝑠 exist and the horizontal integral ∫𝜎′

(𝜎) 𝑓(𝑥+
𝑦𝑖)𝑑𝑥 vanishes as 𝑦 → ±∞. Then the limit of rectangle integrals

∫
𝜎′+𝑖𝑈

𝜎+𝑖𝑇
𝑓(𝑠)𝑑𝑠

as 𝑈 → ∞ is the “UpperUIntegral” of 𝑓 .
Proof. Almost by definition.

Lemma 3.2.4 (RectangleIntegral-tendsTo-LowerU). Let 𝜎, 𝜎′ ∈ R, and 𝑓 ∶ C → C such that
the vertical integrals ∫(𝜎) 𝑓(𝑠)𝑑𝑠 and ∫(𝜎′) 𝑓(𝑠)𝑑𝑠 exist and the horizontal integral ∫𝜎′

(𝜎) 𝑓(𝑥 +
𝑦𝑖)𝑑𝑥 vanishes as 𝑦 → −∞. Then the limit of rectangle integrals

∫
𝜎′−𝑖𝑇

𝜎−𝑖𝑈
𝑓(𝑠)𝑑𝑠

as 𝑈 → ∞ is the “LowerUIntegral” of 𝑓 .
Proof. Almost by definition.

TODO : Move to general section

Lemma 3.2.5 (limitOfConstant). Let 𝑎 ∶ R → C be a function, and let 𝜎 > 0 be a real
number. Suppose that, for all 𝜎, 𝜎′ > 0, we have 𝑎(𝜎′) = 𝑎(𝜎), and that lim𝜎→∞ 𝑎(𝜎) = 0.
Then 𝑎(𝜎) = 0.
Proof.

Lemma 3.2.6 (limitOfConstantLeft). Let 𝑎 ∶ R → C be a function, and let 𝜎 < −3/2 be a
real number. Suppose that, for all 𝜎, 𝜎′ > 0, we have 𝑎(𝜎′) = 𝑎(𝜎), and that lim𝜎→−∞ 𝑎(𝜎) =
0. Then 𝑎(𝜎) = 0.
Proof.

Lemma 3.2.7 (tendsto-rpow-atTop-nhds-zero-of-norm-lt-one). Let 𝑥 > 0 and 𝑥 < 1. Then

lim
𝜎→∞

𝑥𝜎 = 0.

Proof. Standard.

Lemma 3.2.8 (tendsto-rpow-atTop-nhds-zero-of-norm-gt-one). Let 𝑥 > 1. Then

lim
𝜎→−∞

𝑥𝜎 = 0.

Proof. Standard.

Lemma 3.2.9 (isHolomorphicOn). Let 𝑥 > 0. Then the function 𝑓(𝑠) = 𝑥𝑠/(𝑠(𝑠 + 1)) is
holomorphic on the half-plane {𝑠 ∈ C ∶ ℜ(𝑠) > 0}.
Proof.
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Lemma 3.2.10 (integralPosAux). The integral

∫
R

1
|(1 + 𝑡2)(2 + 𝑡2)|1/2 𝑑𝑡

is positive (and hence convergent - since a divergent integral is zero in Lean, by definition).

Proof.

Lemma 3.2.11 (vertIntBound). Let 𝑥 > 0 and 𝜎 > 1. Then

∣∫
(𝜎)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠∣ ≤ 𝑥𝜎 ∫
R

1
|(1 + 𝑡2)(2 + 𝑡2)|1/2 𝑑𝑡.

Proof. Triangle inequality and pointwise estimate.

Lemma 3.2.12 (vertIntBoundLeft). Let 𝑥 > 1 and 𝜎 < −3/2. Then

∣∫
(𝜎)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠∣ ≤ 𝑥𝜎 ∫
R

1
|(1/4 + 𝑡2)(2 + 𝑡2)|1/2 𝑑𝑡.

Proof. Triangle inequality and pointwise estimate.

Lemma 3.2.13 (isIntegrable). Let 𝑥 > 0 and 𝜎 ∈ R. Then

∫
R

𝑥𝜎+𝑖𝑡

(𝜎 + 𝑖𝑡)(1 + 𝜎 + 𝑖𝑡)𝑑𝑡

is integrable.

Proof.

Lemma 3.2.14 (tendsto-zero-Lower). Let 𝑥 > 0 and 𝜎′, 𝜎″ ∈ R. Then

∫
𝜎″

𝜎′

𝑥𝜎+𝑖𝑡

(𝜎 + 𝑖𝑡)(1 + 𝜎 + 𝑖𝑡)𝑑𝜎

goes to 0 as 𝑡 → −∞.

Proof. The numerator is bounded and the denominator tends to infinity.

Lemma 3.2.15 (tendsto-zero-Upper). Let 𝑥 > 0 and 𝜎′, 𝜎″ ∈ R. Then

∫
𝜎″

𝜎′

𝑥𝜎+𝑖𝑡

(𝜎 + 𝑖𝑡)(1 + 𝜎 + 𝑖𝑡)𝑑𝜎

goes to 0 as 𝑡 → ∞.

Proof. The numerator is bounded and the denominator tends to infinity.

We are ready for the first case of the Perron formula, namely when 𝑥 < 1:
Lemma 3.2.16 (formulaLtOne). For 𝑥 > 0, 𝜎 > 0, and 𝑥 < 1, we have

1
2𝜋𝑖 ∫(𝜎)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠 = 0.
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Proof.

The second case is when 𝑥 > 1. Here are some auxiliary lemmata for the second case.
TODO: Move to more general section

Lemma 3.2.17 (keyIdentity). Let 𝑥 ∈ R and 𝑠 ≠ 0,−1. Then
𝑥𝜎

𝑠(1 + 𝑠) = 𝑥𝜎

𝑠 − 𝑥𝜎

1 + 𝑠

Proof. By ring.

Lemma 3.2.18 (diffBddAtZero). Let 𝑥 > 0. Then for 0 < 𝑐 < 1/2, we have that the
function

𝑠 ↦ 𝑥𝑠

𝑠(𝑠 + 1) − 1
𝑠

is bounded above on the rectangle with corners at −𝑐 − 𝑖 ∗ 𝑐 and 𝑐 + 𝑖 ∗ 𝑐 (except at 𝑠 = 0).
Proof. Applying Lemma 3.2.17, the function 𝑠 ↦ 𝑥𝑠/𝑠(𝑠+1)−1/𝑠 = 𝑥𝑠/𝑠−𝑥0/𝑠−𝑥𝑠/(1+𝑠).
The last term is bounded for 𝑠 away from −1. The first two terms are the difference quotient
of the function 𝑠 ↦ 𝑥𝑠 at 0; since it’s differentiable, the difference remains bounded as
𝑠 → 0.
Lemma 3.2.19 (diffBddAtNegOne). Let 𝑥 > 0. Then for 0 < 𝑐 < 1/2, we have that the
function

𝑠 ↦ 𝑥𝑠

𝑠(𝑠 + 1) − −𝑥−1

𝑠 + 1
is bounded above on the rectangle with corners at −1 − 𝑐 − 𝑖 ∗ 𝑐 and −1 + 𝑐 + 𝑖 ∗ 𝑐 (except
at 𝑠 = −1).
Proof. Applying Lemma 3.2.17, the function 𝑠 ↦ 𝑥𝑠/𝑠(𝑠+1)−𝑥−1/(𝑠+1) = 𝑥𝑠/𝑠−𝑥𝑠/(𝑠+
1) − (−𝑥−1)/(𝑠 + 1). The first term is bounded for 𝑠 away from 0. The last two terms are
the difference quotient of the function 𝑠 ↦ 𝑥𝑠 at −1; since it’s differentiable, the difference
remains bounded as 𝑠 → −1.
Lemma 3.2.20 (residueAtZero). Let 𝑥 > 0. Then for all sufficiently small 𝑐 > 0, we have
that

1
2𝜋𝑖 ∫

𝑐+𝑖∗𝑐

−𝑐−𝑖∗𝑐

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠 = 1.

Proof.

Lemma 3.2.21 (residueAtNegOne). Let 𝑥 > 0. Then for all sufficiently small 𝑐 > 0, we
have that

1
2𝜋𝑖 ∫

𝑐+𝑖∗𝑐−1

−𝑐−𝑖∗𝑐−1

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠 = −1
𝑥.

Proof. Compute the integral.

Lemma 3.2.22 (residuePull1). For 𝑥 > 1 (of course 𝑥 > 0 would suffice) and 𝜎 > 0, we
have 1

2𝜋𝑖 ∫(𝜎)
𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠 = 1 + 1
2𝜋𝑖 ∫(−1/2)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠.
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Proof. We pull to a square with corners at −𝑐−𝑖∗ 𝑐 and 𝑐+ 𝑖∗ 𝑐 for 𝑐 > 0 sufficiently small.
By Lemma 3.2.20, the integral over this square is equal to 1.
Lemma 3.2.23 (residuePull2). For 𝑥 > 1, we have

1
2𝜋𝑖 ∫(−1/2)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠 = −1/𝑥 + 1
2𝜋𝑖 ∫(−3/2)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠.

Proof. Pull contour from (−1/2) to (−3/2).
Lemma 3.2.24 (contourPull3). For 𝑥 > 1 and 𝜎 < −3/2, we have

1
2𝜋𝑖 ∫(−3/2)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠 = 1
2𝜋𝑖 ∫(𝜎)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠.

Proof. Pull contour from (−3/2) to (𝜎).
Lemma 3.2.25 (formulaGtOne). For 𝑥 > 1 and 𝜎 > 0, we have

1
2𝜋𝑖 ∫(𝜎)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠 = 1 − 1/𝑥.

Proof.

The two together give the Perron formula. (Which doesn’t need to be a separate lemma.)
For 𝑥 > 0 and 𝜎 > 0, we have

1
2𝜋𝑖 ∫(𝜎)

𝑥𝑠

𝑠(𝑠 + 1)𝑑𝑠 = {1 − 1
𝑥 if 𝑥 > 1

0 if 𝑥 < 1 .

3.3 Mellin transforms
Lemma 3.3.1 (PartialIntegration). Let 𝑓, 𝑔 be once differentiable functions from R>0 to C
so that 𝑓𝑔′ and 𝑓 ′𝑔 are both integrable, and 𝑓 ⋅ 𝑔(𝑥) → 0 as 𝑥 → 0+,∞. Then

∫
∞

0
𝑓(𝑥)𝑔′(𝑥)𝑑𝑥 = −∫

∞

0
𝑓 ′(𝑥)𝑔(𝑥)𝑑𝑥.

Proof. Partial integration.

In this section, we define the Mellin transform (already in Mathlib, thanks to David
Loeffler), prove its inversion formula, and derive a number of important properties of some
special functions and bumpfunctions.

Def: (Already in Mathlib) Let 𝑓 be a function from R>0 to C. We define the Mellin
transform of 𝑓 to be the function ℳ(𝑓) from C to C defined by

ℳ(𝑓)(𝑠) = ∫
∞

0
𝑓(𝑥)𝑥𝑠−1𝑑𝑥.

[Note: My preferred way to think about this is that we are integrating over the multiplica-
tive group R>0, multiplying by a (not necessarily unitary!) character | ⋅ |𝑠, and integrating
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with respect to the invariant Haar measure 𝑑𝑥/𝑥. This is very useful in the kinds of calcula-
tions carried out below. But may be more difficult to formalize as things now stand. So we
might have clunkier calculations, which “magically” turn out just right - of course they’re
explained by the aforementioned structure...]

Finally, we need Mellin Convolutions and properties thereof.

Definition 3.3.1 (MellinConvolution). Let 𝑓 and 𝑔 be functions from R>0 to C. Then we
define the Mellin convolution of 𝑓 and 𝑔 to be the function 𝑓 ∗ 𝑔 from R>0 to C defined by

(𝑓 ∗ 𝑔)(𝑥) = ∫
∞

0
𝑓(𝑦)𝑔(𝑥/𝑦)𝑑𝑦𝑦 .

Let us start with a simple property of the Mellin convolution.

Lemma 3.3.2 (MellinConvolutionSymmetric). Let 𝑓 and 𝑔 be functions from R>0 to R or
C, for 𝑥 ≠ 0,

(𝑓 ∗ 𝑔)(𝑥) = (𝑔 ∗ 𝑓)(𝑥).
Proof. By Definition 3.3.1,

(𝑓 ∗ 𝑔)(𝑥) = ∫
∞

0
𝑓(𝑦)𝑔(𝑥/𝑦)𝑑𝑦𝑦

in which we change variables to 𝑧 = 𝑥/𝑦:

(𝑓 ∗ 𝑔)(𝑥) = ∫
∞

0
𝑓(𝑥/𝑧)𝑔(𝑧)𝑑𝑧𝑧 = (𝑔 ∗ 𝑓)(𝑥).

The Mellin transform of a convolution is the product of the Mellin transforms.

Theorem 3.3.1 (MellinConvolutionTransform). Let 𝑓 and 𝑔 be functions from R>0 to C
such that

(𝑥, 𝑦) ↦ 𝑓(𝑦)𝑔(𝑥/𝑦)𝑦 𝑥𝑠−1 (3.1)

is absolutely integrable on [0,∞)2. Then

ℳ(𝑓 ∗ 𝑔)(𝑠) = ℳ(𝑓)(𝑠)ℳ(𝑔)(𝑠).

Proof. By Definitions ?? and 3.3.1

ℳ(𝑓 ∗ 𝑔)(𝑠) = ∫
∞

0
∫

∞

0
𝑓(𝑦)𝑔(𝑥/𝑦)𝑥𝑠−1 𝑑𝑦

𝑦 𝑑𝑥

By (3.1) and Fubini’s theorem,

ℳ(𝑓 ∗ 𝑔)(𝑠) = ∫
∞

0
∫

∞

0
𝑓(𝑦)𝑔(𝑥/𝑦)𝑥𝑠−1𝑑𝑥𝑑𝑦𝑦

in which we change variables from 𝑥 to 𝑧 = 𝑥/𝑦:

ℳ(𝑓 ∗ 𝑔)(𝑠) = ∫
∞

0
∫

∞

0
𝑓(𝑦)𝑔(𝑧)𝑦𝑠−1𝑧𝑠−1𝑑𝑧𝑑𝑦
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which, by Definition ??, is

ℳ(𝑓 ∗ 𝑔)(𝑠) = ℳ(𝑓)(𝑠)ℳ(𝑔)(𝑠).

The 𝜈 function has Mellin transform ℳ(𝜈)(𝑠) which is entire and decays (at least) like
1/|𝑠|.

[Of course it decays faster than any power of |𝑠|, but it turns out that we will just need
one power.]

Theorem 3.3.2 (MellinOfPsi). The Mellin transform of 𝜈 is

ℳ(𝜈)(𝑠) = 𝑂( 1
|𝑠|) ,

as |𝑠| → ∞ with 𝜎1 ≤ ℜ(𝑠) ≤ 2.
Proof. Integrate by parts:

∣∫
∞

0
𝜈(𝑥)𝑥𝑠 𝑑𝑥

𝑥 ∣ = ∣−∫
∞

0
𝜈′(𝑥)𝑥

𝑠

𝑠 𝑑𝑥∣

≤ 1
|𝑠| ∫

2

1/2
|𝜈′(𝑥)|𝑥ℜ(𝑠)𝑑𝑥.

Since ℜ(𝑠) is bounded, the right-hand side is bounded by a constant times 1/|𝑠|.
We can make a delta spike out of this bumpfunction, as follows.

Definition 3.3.2 (DeltaSpike). Let 𝜈 be a bumpfunction supported in [1/2, 2]. Then for
any 𝜖 > 0, we define the delta spike 𝜈𝜖 to be the function from R>0 to C defined by

𝜈𝜖(𝑥) =
1
𝜖 𝜈 (𝑥 1

𝜖 ) .

This spike still has mass one:

Lemma 3.3.3 (DeltaSpikeMass). For any 𝜖 > 0, we have

∫
∞

0
𝜈𝜖(𝑥)

𝑑𝑥
𝑥 = 1.

Proof. Substitute 𝑦 = 𝑥1/𝜖, and use the fact that 𝜈 has mass one, and that 𝑑𝑥/𝑥 is Haar
measure.

The Mellin transform of the delta spike is easy to compute.

Theorem 3.3.3 (MellinOfDeltaSpike). For any 𝜖 > 0, the Mellin transform of 𝜈𝜖 is

ℳ(𝜈𝜖)(𝑠) = ℳ(𝜈) (𝜖𝑠) .

Proof. Substitute 𝑦 = 𝑥1/𝜖, use Haar measure; direct calculation.

In particular, for 𝑠 = 1, we have that the Mellin transform of 𝜈𝜖 is 1 + 𝑂(𝜖).
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Corollary 3.3.1 (MellinOfDeltaSpikeAt1). For any 𝜖 > 0, we have

ℳ(𝜈𝜖)(1) = ℳ(𝜈)(𝜖).

Proof. This is immediate from the above theorem.

Lemma 3.3.4 (MellinOfDeltaSpikeAt1-asymp). As 𝜖 → 0, we have

ℳ(𝜈𝜖)(1) = 1 + 𝑂(𝜖).

Proof. By Lemma 3.3.1,
ℳ(𝜈𝜖)(1) = ℳ(𝜈)(𝜖)

which by Definition ?? is

ℳ(𝜈)(𝜖) = ∫
∞

0
𝜈(𝑥)𝑥𝜖−1𝑑𝑥.

Since 𝜈(𝑥)𝑥𝜖−1 is integrable (because 𝜈 is continuous and compactly supported),

ℳ(𝜈)(𝜖) −∫
∞

0
𝜈(𝑥)𝑑𝑥𝑥 = ∫

∞

0
𝜈(𝑥)(𝑥𝜖−1 − 𝑥−1)𝑑𝑥.

By Taylor’s theorem,
𝑥𝜖−1 − 𝑥−1 = 𝑂(𝜖)

so, since 𝜈 is absolutely integrable,

ℳ(𝜈)(𝜖) −∫
∞

0
𝜈(𝑥)𝑑𝑥𝑥 = 𝑂(𝜖).

We conclude the proof using Theorem 3.3.5.

Let 1(0,1] be the function from R>0 to C defined by

1(0,1](𝑥) = {1 if 𝑥 ≤ 1
0 if 𝑥 > 1 .

This has Mellin transform: [Note: this already exists in mathlib]

Theorem 3.3.4 (MellinOf1). The Mellin transform of 1(0,1] is

ℳ(1(0,1])(𝑠) =
1
𝑠 .

Proof. This is a straightforward calculation.

What will be essential for us is properties of the smooth version of 1(0,1], obtained as the
Mellin convolution of 1(0,1] with 𝜈𝜖.

Definition 3.3.3 (Smooth1). Let 𝜖 > 0. Then we define the smooth function 1̃𝜖 from R>0
to C by

1̃𝜖 = 1(0,1] ∗ 𝜈𝜖.
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Proof. Let 𝑐 ∶= 2𝜖 > 1, in terms of which we wish to prove

−1 < 𝑐 log 𝑐 − 𝑐.

Letting 𝑓(𝑥) ∶= 𝑥 log𝑥 − 𝑥, we can rewrite this as 𝑓(1) < 𝑓(𝑐). Since

𝑑
𝑑𝑥𝑓(𝑥) = log𝑥 > 0,

𝑓 is monotone increasing on [1, ∞), and we are done.

In particular, we have the following two properties.

Lemma 3.3.5 (Smooth1Properties-below). Fix 𝜖 > 0. There is an absolute constant 𝑐 > 0
so that: If 0 < 𝑥 ≤ (1 − 𝑐𝜖), then

1̃𝜖(𝑥) = 1.
Proof. Opening the definition, we have that the Mellin convolution of 1(0,1] with 𝜈𝜖 is

∫
∞

0
1(0,1](𝑦)𝜈𝜖(𝑥/𝑦)

𝑑𝑦
𝑦 = ∫

1

0
𝜈𝜖(𝑥/𝑦)

𝑑𝑦
𝑦 .

The support of 𝜈𝜖 is contained in [1/2𝜖, 2𝜖], so it suffices to consider 𝑦 ∈ [1/2𝜖𝑥, 2𝜖𝑥] for
nonzero contributions. If 𝑥 < 2−𝜖, then the integral is the same as that over (0,∞):

∫
1

0
𝜈𝜖(𝑥/𝑦)

𝑑𝑦
𝑦 = ∫

∞

0
𝜈𝜖(𝑥/𝑦)

𝑑𝑦
𝑦 ,

in which we change variables to 𝑧 = 𝑥/𝑦 (using 𝑥 > 0):

∫
∞

0
𝜈𝜖(𝑥/𝑦)

𝑑𝑦
𝑦 = ∫

∞

0
𝜈𝜖(𝑧)

𝑑𝑧
𝑧 ,

which is equal to one by Lemma 3.3.3. We then choose

𝑐 ∶= log 2,

which satisfies
𝑐 > 1 − 2−𝜖

𝜖
by Lemma ??, so

1 − 𝑐𝜖 < 2−𝜖.

Lemma 3.3.6 (Smooth1Properties-above). Fix 0 < 𝜖 < 1. There is an absolute constant
𝑐 > 0 so that: if 𝑥 ≥ (1 + 𝑐𝜖), then

1̃𝜖(𝑥) = 0.
Proof. Again the Mellin convolution is

∫
1

0
𝜈𝜖(𝑥/𝑦)

𝑑𝑦
𝑦 ,
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but now if 𝑥 > 2𝜖, then the support of 𝜈𝜖 is disjoint from the region of integration, and
hence the integral is zero. We choose

𝑐 ∶= 2 log 2.

By Lemma ??,
𝑐 > 21 − 2−𝜖

𝜖 > 2𝜖 1 − 2−𝜖

𝜖 = 2𝜖 − 1
𝜖 ,

so
1 + 𝑐𝜖 > 2𝜖.

Lemma 3.3.7 (Smooth1Nonneg). If 𝜈 is nonnegative, then 1̃𝜖(𝑥) is nonnegative.
Proof. By Definitions 3.3.3, 3.3.1 and 3.3.2

1̃𝜖(𝑥) = ∫
∞

0
1(0,1](𝑦)

1
𝜖 𝜈((𝑥/𝑦)

1
𝜖 )𝑑𝑦𝑦

and all the factors in the integrand are nonnegative.

Lemma 3.3.8 (Smooth1LeOne). If 𝜈 is nonnegative and has mass one, then 1̃𝜖(𝑥) ≤ 1,
∀𝑥 > 0.
Proof. By Definitions 3.3.3, 3.3.1 and 3.3.2

1̃𝜖(𝑥) = ∫
∞

0
1(0,1](𝑦)

1
𝜖 𝜈((𝑥/𝑦)

1
𝜖 )𝑑𝑦𝑦

and since 1(0,1](𝑦) ≤ 1, and all the factors in the integrand are nonnegative,

1̃𝜖(𝑥) ≤ ∫
∞

0

1
𝜖 𝜈((𝑥/𝑦)

1
𝜖 )𝑑𝑦𝑦

(because in mathlib the integral of a non-integrable function is 0, for the inequality above
to be true, we must prove that 𝜈((𝑥/𝑦) 1

𝜖 )/𝑦 is integrable; this follows from the computation
below). We then change variables to 𝑧 = (𝑥/𝑦) 1

𝜖 :

1̃𝜖(𝑥) ≤ ∫
∞

0
𝜈(𝑧)𝑑𝑧𝑧

which by Theorem 3.3.5 is 1.

Combining the above, we have the following three Main Lemmata of this section on the
Mellin transform of 1̃𝜖.

Lemma 3.3.9 (MellinOfSmooth1a). Fix 𝜖 > 0. Then the Mellin transform of 1̃𝜖 is

ℳ(1̃𝜖)(𝑠) =
1
𝑠 (ℳ(𝜈) (𝜖𝑠)) .
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Proof. By Definition 3.3.3,
ℳ(1̃𝜖)(𝑠) = ℳ(1(0,1] ∗ 𝜈𝜖)(𝑠).

We wish to apply Theorem 3.3.1. To do so, we must prove that
(𝑥, 𝑦) ↦ 1(0,1](𝑦)𝜈𝜖(𝑥/𝑦)/𝑦

is integrable on [0,∞)2. It is actually easier to do this for the convolution: 𝜈𝜖 ∗ 1(0,1], so we
use Lemma 3.3.2: for 𝑥 ≠ 0,

1(0,1] ∗ 𝜈𝜖(𝑥) = 𝜈𝜖 ∗ 1(0,1](𝑥).
Now, for 𝑥 = 0, both sides of the equation are 0, so the equation also holds for 𝑥 = 0.
Therefore,

ℳ(1̃𝜖)(𝑠) = ℳ(𝜈𝜖 ∗ 1(0,1])(𝑠).
Now,

(𝑥, 𝑦) ↦ 𝜈𝜖(𝑦)1(0,1](𝑥/𝑦)
𝑥𝑠−1

𝑦
has compact support that is bounded away from 𝑦 = 0 (specifically 𝑦 ∈ [2−𝜖, 2𝜖] and 𝑥 ∈
(0, 𝑦]), so it is integrable. We can thus apply Theorem 3.3.1 and find

ℳ(1̃𝜖)(𝑠) = ℳ(𝜈𝜖)(𝑠)ℳ(1(0,1])(𝑠).
By Lemmas 3.3.4 and 3.3.3,

ℳ(1̃𝜖)(𝑠) =
1
𝑠ℳ(𝜈)(𝜖𝑠).

Lemma 3.3.10 (MellinOfSmooth1b). Given 0 < 𝜎1 ≤ 𝜎2, for any 𝑠 such that 𝜎1 ≤ ℛ𝑒(𝑠) ≤
𝜎2, we have

ℳ(1̃𝜖)(𝑠) = 𝑂( 1
𝜖|𝑠|2) .

Proof. Use Lemma 3.3.9 and the bound in Lemma 3.3.2.

Lemma 3.3.11 (MellinOfSmooth1c). At 𝑠 = 1, we have

ℳ(1̃𝜖)(1) = 1 + 𝑂(𝜖)).
Proof. Follows from Lemmas 3.3.9, 3.3.1 and 3.3.4.

Lemma 3.3.12 (Smooth1ContinuousAt). Fix a nonnegative, continuously differentiable
function 𝐹 on R with support in [1/2, 2]. Then for any 𝜖 > 0, the function 𝑥 ↦ ∫(0,∞) 𝑥

1+𝑖𝑡1̃𝜖(𝑥)𝑑𝑥
is continuous at any 𝑦 > 0.
Proof. Use Lemma ?? to write 1̃𝜖(𝑥) as an integral over an integral near 1, in particular
avoiding the singularity at 0. The integrand may be bounded by 2𝜖𝜈𝜖(𝑡) which is independent
of 𝑥 and we can use dominated convergence to prove continuity.

Let 𝜈 be a bumpfunction.
Theorem 3.3.5 (SmoothExistence). There exists a smooth (once differentiable would be
enough), nonnegative “bumpfunction” 𝜈, supported in [1/2, 2] with total mass one:

∫
∞

0
𝜈(𝑥)𝑑𝑥𝑥 = 1.

Proof. Same idea as Urysohn-type argument.
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3.4 Zeta Bounds
Already on Mathlib (with a shortened proof):

Theorem 3.4.1 (hasDerivAt-conj-conj). Let 𝑓 ∶ C → C be a complex differentiable function
at 𝑝 ∈ C with derivative 𝑎. Then the function 𝑔(𝑧) = 𝑓(𝑧) is complex differentiable at 𝑝
with derivative 𝑎.
Proof. We expand the definition of the derivative and compute.

Submitted to Mathlib:

Theorem 3.4.2 (deriv-conj-conj). Let 𝑓 ∶ C → C be a function at 𝑝 ∈ C with derivative 𝑎.
Then the derivative of the function 𝑔(𝑧) = 𝑓(𝑧) at 𝑝 is 𝑎.
Proof. We proceed by case analysis on whether 𝑓 is differentiable at 𝑝. If 𝑓 is differentiable
at 𝑝, then we can apply the previous theorem. If 𝑓 is not differentiable at 𝑝, then neither is
𝑔, and both derivatives have the default value of zero.

Theorem 3.4.3 (conj-riemannZeta-conj-aux1). Conjugation symmetry of the Riemann zeta
function in the half-plane of convergence. Let 𝑠 ∈ C with ℜ(𝑠) > 1. Then 𝜁(𝑠) = 𝜁(𝑠).
Proof. We expand the definition of the Riemann zeta function as a series and find that the
two sides are equal term by term.

Theorem 3.4.4 (conj-riemannZeta-conj). Conjugation symmetry of the Riemann zeta func-
tion. Let 𝑠 ∈ C. Then

𝜁(𝑠) = 𝜁(𝑠).
Proof. By the previous lemma, the two sides are equal on the half-plane {𝑠 ∈ C ∶ ℜ(𝑠) > 1}.
Then, by analytic continuation, they are equal on the whole complex plane.

Theorem 3.4.5 (riemannZeta-conj). Conjugation symmetry of the Riemann zeta function.
Let 𝑠 ∈ C. Then

𝜁(𝑠) = 𝜁(𝑠).
Proof. This follows as an immediate corollary of Theorem 3.4.4.

Theorem 3.4.6 (deriv-riemannZeta-conj). Conjugation symmetry of the derivative of the
Riemann zeta function. Let 𝑠 ∈ C. Then

𝜁′(𝑠) = 𝜁′(𝑠).

Proof. We apply the derivative conjugation symmetry to the Riemann zeta function and use
the conjugation symmetry of the Riemann zeta function itself.

Theorem 3.4.7 (intervalIntegral-conj). The conjugation symmetry of the interval integral.
Let 𝑓 ∶ R → C be a measurable function, and let 𝑎, 𝑏 ∈ R. Then

∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 = ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

Proof. We unfold the interval integral into an integral over a uIoc and use the conjugation
property of integrals.
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We record here some prelimiaries about the zeta function and general holomorphic func-
tions.

Theorem 3.4.8 (ResidueOfTendsTo). If a function 𝑓 is holomorphic in a neighborhood of
𝑝 and lim𝑠→𝑝(𝑠 − 𝑝)𝑓(𝑠) = 𝐴, then 𝑓(𝑠) = 𝐴

𝑠−𝑝 +𝑂(1) near 𝑝.

Proof. The function (𝑠 − 𝑝) ⋅ 𝑓(𝑠) bounded, so by Theorem 3.1.1, there is a holomorphic
function, 𝑔, say, so that (𝑠 − 𝑝)𝑓(𝑠) = 𝑔(𝑠) in a neighborhood of 𝑠 = 𝑝, and 𝑔(𝑝) = 𝐴. Now
because 𝑔 is holomorphic, near 𝑠 = 𝑝, we have 𝑔(𝑠) = 𝐴 + 𝑂(𝑠 − 𝑝). Then when you divide
by (𝑠 − 𝑝), you get 𝑓(𝑠) = 𝐴/(𝑠 − 𝑝) + 𝑂(1).
Theorem 3.4.9 (riemannZetaResidue). The Riemann zeta function 𝜁(𝑠) has a simple pole
at 𝑠 = 1 with residue 1. In particular, the function 𝜁(𝑠)− 1

𝑠−1 is bounded in a neighborhood
of 𝑠 = 1.
Proof. From riemannZeta_residue_one (in Mathlib), we know that (𝑠−1)𝜁(𝑠) goes to 1 as
𝑠 → 1. Now apply Theorem 3.4.8. (This can also be done using 𝜁0 below, which is expressed
as 1/(𝑠 − 1) plus things that are holomorphic for ℜ(𝑠) > 0...)
Theorem 3.4.10 (nonZeroOfBddAbove). If a function 𝑓 has a simple pole at a point 𝑝
with residue 𝐴 ≠ 0, then 𝑓 is nonzero in a punctured neighborhood of 𝑝.
Proof. We know that 𝑓(𝑠) = 𝐴

𝑠−𝑝 +𝑂(1) near 𝑝, so we can write

𝑓(𝑠) = (𝑓(𝑠) − 𝐴
𝑠 − 𝑝) + 𝐴

𝑠 − 𝑝 .

The first term is bounded, say by 𝑀 , and the second term goes to ∞ as 𝑠 → 𝑝. Therefore,
there exists a neighborhood 𝑉 of 𝑝 such that for all 𝑠 ∈ 𝑉 ∖ {𝑝}, we have 𝑓(𝑠) ≠ 0.
Theorem 3.4.11 (logDerivResidue). If 𝑓 is holomorphic in a neighborhood of 𝑝, and there
is a simple pole at 𝑝, then 𝑓 ′/𝑓 has a simple pole at 𝑝 with residue −1:

𝑓 ′(𝑠)
𝑓(𝑠) = −1

𝑠 − 𝑝 + 𝑂(1).

Proof. Using Theorem 3.1.1, there is a function 𝑔 holomorphic near 𝑝, for which 𝑓(𝑠) =
𝐴/(𝑠 − 𝑝) + 𝑔(𝑠) = ℎ(𝑠)/(𝑠 − 𝑝). Here ℎ(𝑠) ∶= 𝐴 + 𝑔(𝑠)(𝑠 − 𝑝) which is nonzero in a
neighborhood of 𝑝 (since ℎ goes to 𝐴 which is nonzero). Then 𝑓 ′(𝑠) = (ℎ′(𝑠)(𝑠 − 𝑝) −
ℎ(𝑠))/(𝑠 − 𝑝)2, and we can compute the quotient:

𝑓 ′(𝑠)
𝑓(𝑠) + 1/(𝑠 − 𝑝) = ℎ′(𝑠)(𝑠 − 𝑝) − ℎ(𝑠)

ℎ(𝑠) ⋅ 1
(𝑠 − 𝑝) + 1/(𝑠 − 𝑝) = ℎ′(𝑠)

ℎ(𝑠) .

Since ℎ is nonvanishing near 𝑝, this remains bounded in a neighborhood of 𝑝.
Theorem 3.4.12 (BddAbove-to-IsBigO). If 𝑓 is bounded above in a punctured neighbor-
hood of 𝑝, then 𝑓 is 𝑂(1) in that neighborhood.

Proof. Elementary.

Let’s also record that if a function 𝑓 has a simple pole at 𝑝 with residue 𝐴, and 𝑔 is
holomorphic near 𝑝, then the residue of 𝑓 ⋅ 𝑔 is 𝐴 ⋅ 𝑔(𝑝).
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Theorem 3.4.13 (ResidueMult). If 𝑓 has a simple pole at 𝑝 with residue 𝐴, and 𝑔 is
holomorphic near 𝑝, then the residue of 𝑓 ⋅ 𝑔 at 𝑝 is 𝐴 ⋅ 𝑔(𝑝). That is, we assume that

𝑓(𝑠) = 𝐴
𝑠 − 𝑝 + 𝑂(1)

near 𝑝, and that 𝑔 is holomorphic near 𝑝. Then

𝑓(𝑠) ⋅ 𝑔(𝑠) = 𝐴 ⋅ 𝑔(𝑝)
𝑠 − 𝑝 + 𝑂(1).

Proof. Elementary calculation.

𝑓(𝑠) ∗ 𝑔(𝑠) − 𝐴 ∗ 𝑔(𝑝)
𝑠 − 𝑝 = (𝑓(𝑠) ∗ 𝑔(𝑠) − 𝐴 ∗ 𝑔(𝑠)

𝑠 − 𝑝 ) + (𝐴 ∗ 𝑔(𝑠) − 𝐴 ∗ 𝑔(𝑝)
𝑠 − 𝑝 ) .

The first term is 𝑔(𝑠)(𝑓(𝑠)− 𝐴
𝑠−𝑝 ), which is bounded near 𝑝 by the assumption on 𝑓 and the

fact that 𝑔 is holomorphic near 𝑝. The second term is 𝐴 times the log derivative of 𝑔 at 𝑝,
which is bounded by the assumption that 𝑔 is holomorphic.

As a corollary, the log derivative of the Riemann zeta function has a simple pole at 𝑠 = 1:
Theorem 3.4.14 (riemannZetaLogDerivResidue). The log derivative of the Riemann zeta
function 𝜁(𝑠) has a simple pole at 𝑠 = 1 with residue −1: − 𝜁′(𝑠)

𝜁(𝑠) − 1
𝑠−1 = 𝑂(1).

Proof. This follows from Theorem 3.4.11 and Theorem 3.4.9.

Definition 3.4.1 (riemannZeta0). For any natural 𝑁 ≥ 1, we define

𝜁0(𝑁, 𝑠) ∶= ∑
1≤𝑛≤𝑁

1
𝑛𝑠 + −𝑁1−𝑠

1 − 𝑠 + −𝑁−𝑠

2 + 𝑠∫
∞

𝑁

⌊𝑥⌋ + 1/2 − 𝑥
𝑥𝑠+1 𝑑𝑥

Lemma 3.4.1 (sum-eq-int-deriv). Let 𝑎 < 𝑏, and let 𝜙 be continuously differentiable on
[𝑎, 𝑏]. Then

∑
𝑎<𝑛≤𝑏

𝜙(𝑛) = ∫
𝑏

𝑎
𝜙(𝑥) 𝑑𝑥+(⌊𝑏⌋ + 1

2 − 𝑏)𝜙(𝑏)−(⌊𝑎⌋ + 1
2 − 𝑎)𝜙(𝑎)−∫

𝑏

𝑎
(⌊𝑥⌋ + 1

2 − 𝑥)𝜙′(𝑥) 𝑑𝑥.

Proof. Specialize Abel summation from Mathlib to the trivial arithmetic function and then
manipulate integrals.

Lemma 3.4.2 (ZetaSum-aux1). Let 0 < 𝑎 < 𝑏 be natural numbers and 𝑠 ∈ C with 𝑠 ≠ 1
and 𝑠 ≠ 0. Then

∑
𝑎<𝑛≤𝑏

1
𝑛𝑠 = 𝑏1−𝑠 − 𝑎1−𝑠

1 − 𝑠 + 𝑏−𝑠 − 𝑎−𝑠

2 + 𝑠∫
𝑏

𝑎

⌊𝑥⌋ + 1/2 − 𝑥
𝑥𝑠+1 𝑑𝑥.

Proof. Apply Lemma 3.4.1 to the function 𝑥 ↦ 𝑥−𝑠.

Lemma 3.4.3 (ZetaBnd-aux1a). For any 0 < 𝑎 < 𝑏 and 𝑠 ∈ C with 𝜎 = ℜ(𝑠) > 0,

∫
𝑏

𝑎
∣ ⌊𝑥⌋ + 1/2 − 𝑥

𝑥𝑠+1 𝑑𝑥∣ ≤ 𝑎−𝜎 − 𝑏−𝜎

𝜎 .
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Proof. Apply the triangle inequality

∣∫
𝑏

𝑎

⌊𝑥⌋ + 1/2 − 𝑥
𝑥𝑠+1 𝑑𝑥∣ ≤ ∫

𝑏

𝑎

1
𝑥𝜎+1 𝑑𝑥,

and evaluate the integral.

Lemma 3.4.4 (ZetaSum-aux2). Let 𝑁 be a natural number and 𝑠 ∈ C, ℜ(𝑠) > 1. Then

∑
𝑁<𝑛

1
𝑛𝑠 = −𝑁1−𝑠

1 − 𝑠 + −𝑁−𝑠

2 + 𝑠∫
∞

𝑁

⌊𝑥⌋ + 1/2 − 𝑥
𝑥𝑠+1 𝑑𝑥.

Proof. Apply Lemma 3.4.2 with 𝑎 = 𝑁 and 𝑏 → ∞.

Lemma 3.4.5 (ZetaBnd-aux1b). For any 𝑁 ≥ 1 and 𝑠 = 𝜎 + 𝑡𝐼 ∈ C, 𝜎 > 0,

∣∫
∞

𝑁

⌊𝑥⌋ + 1/2 − 𝑥
𝑥𝑠+1 𝑑𝑥∣ ≤ 𝑁−𝜎

𝜎 .

Proof. Apply Lemma 3.4.3 with 𝑎 = 𝑁 and 𝑏 → ∞.

Lemma 3.4.6 (ZetaBnd-aux1). For any 𝑁 ≥ 1 and 𝑠 = 𝜎 + 𝑡𝐼 ∈ C, 𝜎 =∈ (0, 2], 2 < |𝑡|,

∣𝑠∫
∞

𝑁

⌊𝑥⌋ + 1/2 − 𝑥
𝑥𝑠+1 𝑑𝑥∣ ≤ 2|𝑡|𝑁

−𝜎

𝜎 .

Proof. Apply Lemma 3.4.5 and estimate |𝑠| ≪ |𝑡|.
Big-Oh version of Lemma 3.4.6.

Lemma 3.4.7 (ZetaBnd-aux1p). For any 𝑁 ≥ 1 and 𝑠 = 𝜎 + 𝑡𝐼 ∈ C, 𝜎 =∈ (0, 2], 2 < |𝑡|,

∣𝑠∫
∞

𝑁

⌊𝑥⌋ + 1/2 − 𝑥
𝑥𝑠+1 𝑑𝑥∣ ≪ |𝑡|𝑁

−𝜎

𝜎 .

Proof. Apply Lemma 3.4.5 and estimate |𝑠| ≪ |𝑡|.
Theorem 3.4.15 (HolomorphicOn-riemannZeta0). For any 𝑁 ≥ 1, the function 𝜁0(𝑁, 𝑠)
is holomorphic on {𝑠 ∈ C ∣ ℜ(𝑠) > 0 ∧ 𝑠 ≠ 1}.
Proof. The function 𝜁0(𝑁, 𝑠) is a finite sum of entire functions, plus an integral that’s
absolutely convergent on {𝑠 ∈ C ∣ ℜ(𝑠) > 0 ∧ 𝑠 ≠ 1} by Lemma 3.4.5.

Lemma 3.4.8 (isPathConnected-aux). The set {𝑠 ∈ C ∣ ℜ(𝑠) > 0 ∧ 𝑠 ≠ 1} is path-
connected.

Proof. Construct explicit paths from 2 to any point, either a line segment or two joined
ones.

Lemma 3.4.9 (Zeta0EqZeta). For ℜ(𝑠) > 0, 𝑠 ≠ 1, and for any 𝑁 ,

𝜁0(𝑁, 𝑠) = 𝜁(𝑠).

Proof. Use Lemma 3.4.4 and the Definition 3.4.1.
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Lemma 3.4.10 (ZetaBnd-aux2). Given 𝑛 ≤ 𝑡 and 𝜎 with 1 − 𝐴/ log 𝑡 ≤ 𝜎, we have that

|𝑛−𝑠| ≤ 𝑛−1𝑒𝐴.

Proof. Use |𝑛−𝑠| = 𝑛−𝜎 = 𝑒−𝜎 log𝑛 ≤ exp(− (1 − 𝐴
log 𝑡) log𝑛) ≤ 𝑛−1𝑒𝐴, since 𝑛 ≤ 𝑡.

Lemma 3.4.11 (ZetaUpperBnd). For any 𝑠 = 𝜎 + 𝑡𝐼 ∈ C, 1/2 ≤ 𝜎 ≤ 2, 3 < |𝑡| and any
0 < 𝐴 < 1 sufficiently small, and 1 − 𝐴/ log |𝑡| ≤ 𝜎, we have

|𝜁(𝑠)| ≪ log 𝑡.

Proof. First replace 𝜁(𝑠) by 𝜁0(𝑁, 𝑠) for 𝑁 = ⌊|𝑡|⌋. We estimate:

|𝜁0(𝑁, 𝑠)| ≪ ∑
1≤𝑛≤|𝑡|

|𝑛−𝑠| + −|𝑡|1−𝜎

|1 − 𝑠| + −|𝑡|−𝜎

2 + |𝑡| ⋅ |𝑡|−𝜎/𝜎

≪ 𝑒𝐴 ∑
1≤𝑛<|𝑡|

𝑛−1 + |𝑡|1−𝜎

, where we used Lemma 3.4.10 and Lemma 3.4.6. The first term is ≪ log |𝑡|. For the second
term, estimate

|𝑡|1−𝜎 ≤ |𝑡|1−(1−𝐴/ log |𝑡|) = |𝑡|𝐴/ log |𝑡| ≪ 1.

Lemma 3.4.12 (DerivUpperBnd-aux7). For any 𝑠 = 𝜎 + 𝑡𝐼 ∈ C, 1/2 ≤ 𝜎 ≤ 2, 3 < |𝑡|, and
any 0 < 𝐴 < 1 sufficiently small, and 1 − 𝐴/ log |𝑡| ≤ 𝜎, we have

∥𝑠 ⋅ ∫
∞

𝑁
(⌊𝑥⌋ + 1

2 − 𝑥) ⋅ 𝑥−𝑠−1 ⋅ (− log𝑥)∥ ≤ 2 ⋅ |𝑡| ⋅ 𝑁−𝜎/𝜎 ⋅ log |𝑡|.

Proof. Estimate |𝑠| = |𝜎+𝑡𝐼| by |𝑠| ≤ 2+|𝑡| ≤ 2|𝑡| (since |𝑡| > 3). Estimating | ⌊𝑥⌋+1/2−𝑥|
by 1, and using |𝑥−𝑠−1| = 𝑥−𝜎−1, we have

∥𝑠 ⋅ ∫
∞

𝑁
(⌊𝑥⌋ + 1

2 − 𝑥) ⋅ 𝑥−𝑠−1 ⋅ (− log𝑥)∥ ≤ 2 ⋅ |𝑡|∫
∞

𝑁
𝑥−𝜎 ⋅ (log𝑥).

For the last integral, integrate by parts, getting:

∫
∞

𝑁
𝑥−𝜎−1 ⋅ (log𝑥) = 1

𝜎𝑁−𝜎 ⋅ log𝑁 + 1
𝜎2 ⋅ 𝑁−𝜎.

Now use log𝑁 ≤ log |𝑡| to get the result.

Lemma 3.4.13 (ZetaDerivUpperBnd). For any 𝑠 = 𝜎 + 𝑡𝐼 ∈ C, 1/2 ≤ 𝜎 ≤ 2, 3 < |𝑡|, there
is an 𝐴 > 0 so that for 1 − 𝐴/ log 𝑡 ≤ 𝜎, we have

|𝜁′(𝑠)| ≪ log2 𝑡.

Proof. First replace 𝜁(𝑠) by 𝜁0(𝑁, 𝑠) for 𝑁 = ⌊|𝑡|⌋. Differentiating term by term, we get:

𝜁′(𝑠) = − ∑
1≤𝑛<𝑁

𝑛−𝑠 log𝑛+ 𝑁1−𝑠

(1 − 𝑠)2+
𝑁1−𝑠 log𝑁

1 − 𝑠 +𝑁−𝑠 log𝑁
2 +∫

∞

𝑁

⌊𝑥⌋ + 1/2 − 𝑥
𝑥𝑠+1 𝑑𝑥−𝑠∫

∞

𝑁
log𝑥⌊𝑥⌋ + 1/2 − 𝑥

𝑥𝑠+1 𝑑𝑥.

Estimate as before, with an extra factor of log |𝑡|.
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Lemma 3.4.14 (ZetaNear1BndFilter). As 𝜎 → 1+,

|𝜁(𝜎)| ≪ 1/(𝜎 − 1).

Proof. Zeta has a simple pole at 𝑠 = 1. Equivalently, 𝜁(𝑠)(𝑠 − 1) remains bounded near 1.
Lots of ways to prove this. Probably the easiest one: use the expression for 𝜁0(𝑁, 𝑠) with
𝑁 = 1 (the term 𝑁1−𝑠/(1 − 𝑠) being the only unbounded one).

Lemma 3.4.15 (ZetaNear1BndExact). There exists a 𝑐 > 0 such that for all 1 < 𝜎 ≤ 2,

|𝜁(𝜎)| ≤ 𝑐/(𝜎 − 1).

Proof. Split into two cases, use Lemma 3.4.14 for 𝜎 sufficiently small and continuity on a
compact interval otherwise.

Lemma 3.4.16 (ZetaLowerBound3). There exists a 𝑐 > 0 such that for all 1 < 𝜎 <= 2 and
3 < |𝑡|,

𝑐 (𝜎 − 1)3/4
(log |𝑡|)1/4 ≤ |𝜁(𝜎 + 𝑡𝐼)|.

Proof. Combine Lemma ?? with upper bounds for |𝜁(𝜎)| (from Lemma 3.4.15) and |𝜁(𝜎 +
2𝑖𝑡)| (from Lemma 3.4.11).

Lemma 3.4.17 (ZetaInvBound1). For all 𝜎 > 1,

1/|𝜁(𝜎 + 𝑖𝑡)| ≤ |𝜁(𝜎)|3/4|𝜁(𝜎 + 2𝑖𝑡)|1/4

Proof. The identity
1 ≤ |𝜁(𝜎)|3|𝜁(𝜎 + 𝑖𝑡)|4|𝜁(𝜎 + 2𝑖𝑡)|

for 𝜎 > 1 is already proved by Michael Stoll in the EulerProducts PNT file.

Lemma 3.4.18 (ZetaInvBound2). For 𝜎 > 1 (and 𝜎 ≤ 2),

1/|𝜁(𝜎 + 𝑖𝑡)| ≪ (𝜎 − 1)−3/4(log |𝑡|)1/4,

as |𝑡| → ∞.

Proof. Combine Lemma 3.4.17 with the bounds in Lemmata 3.4.15 and 3.4.11.

Lemma 3.4.19 (Zeta-eq-int-derivZeta). For any 𝑡 ≠ 0 (so we don’t pass through the pole),
and 𝜎1 < 𝜎2,

∫
𝜎2

𝜎1

𝜁′(𝜎 + 𝑖𝑡)𝑑𝑡 = 𝜁(𝜎2 + 𝑖𝑡) − 𝜁(𝜎1 + 𝑖𝑡).

Proof. This is the fundamental theorem of calculus.

Lemma 3.4.20 (Zeta-diff-Bnd). For any 𝐴 > 0 sufficiently small, there is a constant 𝐶 > 0
so that whenever 1 − 𝐴/ log 𝑡 ≤ 𝜎1 < 𝜎2 ≤ 2 and 3 < |𝑡|, we have that:

|𝜁(𝜎2 + 𝑖𝑡) − 𝜁(𝜎1 + 𝑖𝑡)| ≤ 𝐶(log |𝑡|)2(𝜎2 − 𝜎1).

Proof. Use Lemma 3.4.19 and estimate trivially using Lemma 3.4.13.
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Lemma 3.4.21 (ZetaInvBnd). For any 𝐴 > 0 sufficiently small, there is a constant 𝐶 > 0
so that whenever 1 − 𝐴/ log9 |𝑡| ≤ 𝜎 < 1 + 𝐴/ log9 |𝑡| and 3 < |𝑡|, we have that:

1/|𝜁(𝜎 + 𝑖𝑡)| ≤ 𝐶 log7 |𝑡|.

Proof. Let 𝜎 be given in the prescribed range, and set 𝜎′ ∶= 1 + 𝐴/ log9 |𝑡|. Then

|𝜁(𝜎 + 𝑖𝑡)| ≥ |𝜁(𝜎′ +𝑖𝑡)|− |𝜁(𝜎+ 𝑖𝑡)− 𝜁(𝜎′ +𝑖𝑡)| ≥ 𝐶(𝜎′ −1)3/4 log |𝑡|−1/4 −𝐶 log2 |𝑡|(𝜎′ −𝜎)

≥ 𝐶𝐴3/4 log |𝑡|−7 −𝐶 log2 |𝑡|(2𝐴/ log9 |𝑡|),
where we used Lemma 3.4.18 and Lemma 3.4.20. Now by making 𝐴 sufficiently small (in
particular, something like 𝐴 = 1/16 should work), we can guarantee that

|𝜁(𝜎 + 𝑖𝑡)| ≥ 𝐶
2 (log |𝑡|)−7,

as desired.

Annoyingly, it is not immediate from this that 𝜁 doesn’t vanish there! That’s because
1/0 = 0 in Lean. So we give a second proof of the same fact (refactor this later), with a
lower bound on 𝜁 instead of upper bound on 1/𝜁.
Lemma 3.4.22 (ZetaLowerBnd). For any 𝐴 > 0 sufficiently small, there is a constant
𝐶 > 0 so that whenever 1 − 𝐴/ log9 |𝑡| ≤ 𝜎 < 1 and 3 < |𝑡|, we have that:

|𝜁(𝜎 + 𝑖𝑡)| ≥ 𝐶 log7 |𝑡|.

Proof. Follow same argument.

Now we get a zero free region.

Lemma 3.4.23 (ZetaZeroFree). There is an 𝐴 > 0 so that for 1 − 𝐴/ log9 |𝑡| ≤ 𝜎 < 1 and
3 < |𝑡|,

𝜁(𝜎 + 𝑖𝑡) ≠ 0.
Proof. Apply Lemma 3.4.22.

Lemma 3.4.24 (LogDerivZetaBnd). There is an 𝐴 > 0 so that for 1 − 𝐴/ log9 |𝑡| ≤ 𝜎 <
1 + 𝐴/ log9 |𝑡| and 3 < |𝑡|,

| 𝜁
′

𝜁 (𝜎 + 𝑖𝑡)| ≪ log9 |𝑡|.

Proof. Combine the bound on |𝜁′| from Lemma 3.4.13 with the bound on 1/|𝜁| from Lemma
3.4.21.

Theorem 3.4.16 (ZetaNoZerosOn1Line). The zeta function does not vanish on the 1-line.

Proof. This fact is already proved in Stoll’s work.

Then, since 𝜁 doesn’t vanish on the 1-line, there is a 𝜎 < 1 (depending on 𝑇 ), so that
the box [𝜎, 1] ×ℂ [−𝑇 , 𝑇 ] is free of zeros of 𝜁.
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Lemma 3.4.25 (ZetaNoZerosInBox). For any 𝑇 > 0, there is a constant 𝜎 < 1 so that

𝜁(𝜎′ + 𝑖𝑡) ≠ 0

for all |𝑡| ≤ 𝑇 and 𝜎′ ≥ 𝜎.
Proof. Assume not. Then there is a sequence |𝑡𝑛| ≤ 𝑇 and 𝜎𝑛 → 1 so that 𝜁(𝜎𝑛 + 𝑖𝑡𝑛) = 0.
By compactness, there is a subsequence 𝑡𝑛𝑘

→ 𝑡0 along which 𝜁(𝜎𝑛𝑘
+ 𝑖𝑡𝑛𝑘

) = 0. If 𝑡0 ≠ 0,
use the continuity of 𝜁 to get that 𝜁(1 + 𝑖𝑡0) = 0; this is a contradiction. If 𝑡0 = 0, 𝜁 blows
up near 1, so can’t be zero nearby.

We now prove that there’s an absolute constant 𝜎0 so that 𝜁′/𝜁 is holomorphic on a
rectangle [𝜎2, 2] ×ℂ [−3, 3] ∖ {1}.
Lemma 3.4.26 (LogDerivZetaHolcSmallT). There is a 𝜎2 < 1 so that the function

𝜁′
𝜁 (𝑠)

is holomorphic on {𝜎2 ≤ ℜ𝑠 ≤ 2, |ℑ𝑠| ≤ 3} ∖ {1}.
Proof. The derivative of 𝜁 is holomorphic away from 𝑠 = 1; the denominator 𝜁(𝑠) is nonzero
in this range by Lemma 3.4.25.

Lemma 3.4.27 (LogDerivZetaHolcLargeT). There is an 𝐴 > 0 so that for all 𝑇 > 3, the
function 𝜁′

𝜁 (𝑠) is holomorphic on {1 − 𝐴/ log9 𝑇 ≤ ℜ𝑠 ≤ 2, |ℑ𝑠| ≤ 𝑇} ∖ {1}.

Proof. The derivative of 𝜁 is holomorphic away from 𝑠 = 1; the denominator 𝜁(𝑠) is nonzero
in this range by Lemma 3.4.23.

Lemma 3.4.28 (LogDerivZetaBndUnif). There exist 𝐴,𝐶 > 0 such that

| 𝜁
′

𝜁 (𝜎 + 𝑖𝑡)| ≤ 𝐶 log |𝑡|9

whenever |𝑡| > 3 and 𝜎 > 1 − 𝐴/ log |𝑡|9.
Proof. For 𝜎 close to 1 use Lemma 3.4.24, otherwise estimate trivially.

3.5 Proof of Medium PNT
The approach here is completely standard. We follow the use of ℳ(1̃𝜖) as in [Kontorovich
2015].

Definition 3.5.1 (ChebyshevPsi). The (second) Chebyshev Psi function is defined as

𝜓(𝑥) ∶= ∑
𝑛≤𝑥

Λ(𝑛),

where Λ(𝑛) is the von Mangoldt function.

It has already been established that zeta doesn’t vanish on the 1 line, and has a pole at
𝑠 = 1 of order 1. We also have the following.
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Theorem 3.5.1 (LogDerivativeDirichlet). We have that, for ℜ(𝑠) > 1,

−𝜁′(𝑠)
𝜁(𝑠) =

∞
∑
𝑛=1

Λ(𝑛)
𝑛𝑠 .

Proof. Already in Mathlib.

The main object of study is the following inverse Mellin-type transform, which will turn
out to be a smoothed Chebyshev function.

Definition 3.5.2 (SmoothedChebyshev). Fix 𝜖 > 0, and a bumpfunction supported in
[1/2, 2]. Then we define the smoothed Chebyshev function 𝜓𝜖 from R>0 to C by

𝜓𝜖(𝑋) = 1
2𝜋𝑖 ∫(𝜎)

−𝜁′(𝑠)
𝜁(𝑠) ℳ(1̃𝜖)(𝑠)𝑋𝑠𝑑𝑠,

where we’ll take 𝜎 = 1 + 1/ log𝑋.

Lemma 3.5.1 (SmoothedChebyshevDirichlet-aux-integrable). Fix a nonnegative, continu-
ously differentiable function 𝐹 on R with support in [1/2, 2], and total mass one, ∫(0,∞) 𝐹(𝑥)/𝑥𝑑𝑥 =
1. Then for any 𝜖 > 0, and 𝜎 ∈ (1, 2], the function

𝑥 ↦ ℳ(1̃𝜖)(𝜎 + 𝑖𝑥)

is integrable on R.

Proof. By Lemma 3.3.10 the integrand is 𝑂(1/𝑡2) as 𝑡 → ∞ and hence the function is
integrable.

Lemma 3.5.2 (SmoothedChebyshevDirichlet-aux-tsum-integral). Fix a nonnegative, con-
tinuously differentiable function 𝐹 on R with support in [1/2, 2], and total mass one,
∫(0,∞) 𝐹(𝑥)/𝑥𝑑𝑥 = 1. Then for any 𝜖 > 0 and 𝜎 ∈ (1, 2], the function 𝑥 ↦ ∑∞

𝑛=1
Λ(𝑛)
𝑛𝜎+𝑖𝑡ℳ(1̃𝜖)(𝜎+

𝑖𝑡)𝑥𝜎+𝑖𝑡 is equal to ∑∞
𝑛=1 ∫(0,∞)

Λ(𝑛)
𝑛𝜎+𝑖𝑡ℳ(1̃𝜖)(𝜎 + 𝑖𝑡)𝑥𝜎+𝑖𝑡.

Proof. Interchange of summation and integration.

Theorem 3.5.2 (SmoothedChebyshevDirichlet). We have that

𝜓𝜖(𝑋) =
∞
∑
𝑛=1

Λ(𝑛)1̃𝜖(𝑛/𝑋).

Proof. We have that

𝜓𝜖(𝑋) = 1
2𝜋𝑖 ∫(2)

∞
∑
𝑛=1

Λ(𝑛)
𝑛𝑠 ℳ(1̃𝜖)(𝑠)𝑋𝑠𝑑𝑠.

We have enough decay (thanks to quadratic decay of ℳ(1̃𝜖)) to justify the interchange of
summation and integration. We then get

𝜓𝜖(𝑋) =
∞
∑
𝑛=1

Λ(𝑛) 1
2𝜋𝑖 ∫(2)

ℳ(1̃𝜖)(𝑠)(𝑛/𝑋)−𝑠𝑑𝑠

and apply the Mellin inversion formula.
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The smoothed Chebyshev function is close to the actual Chebyshev function.

Theorem 3.5.3 (SmoothedChebyshevClose). We have that

𝜓𝜖(𝑋) = 𝜓(𝑋) + 𝑂(𝜖𝑋 log𝑋).

Proof. Take the difference. By Lemma 3.3.6 and 3.3.5, the sums agree except when 1−𝑐𝜖 ≤
𝑛/𝑋 ≤ 1 + 𝑐𝜖. This is an interval of length ≪ 𝜖𝑋, and the summands are bounded by
Λ(𝑛) ≪ log𝑋.

Returning to the definition of 𝜓𝜖, fix a large 𝑇 to be chosen later, and set 𝜎0 = 1+1/𝑙𝑜𝑔𝑋,
𝜎1 = 1−𝐴/ log𝑇 9, and 𝜎2 < 𝜎1 a constant. Pull contours (via rectangles!) to go from 𝜎0−𝑖∞
up to 𝜎0 − 𝑖𝑇 , then over to 𝜎1 − 𝑖𝑇 , up to 𝜎1 − 3𝑖, over to 𝜎2 − 3𝑖, up to 𝜎2 + 3𝑖, back over
to 𝜎1 + 3𝑖, up to 𝜎1 + 𝑖𝑇 , over to 𝜎0 + 𝑖𝑇 , and finally up to 𝜎0 + 𝑖∞.

In the process, we will pick up the residue at 𝑠 = 1. We will do this in several stages.
Here the interval integrals are defined as follows:

Definition 3.5.3 (I�).

𝐼1(𝜈, 𝜖,𝑋, 𝑇 ) ∶= 1
2𝜋𝑖 ∫

−𝑇

−∞
(−𝜁′

𝜁 (𝜎0 + 𝑡𝑖))ℳ( ̃1𝜖)(𝜎0 + 𝑡𝑖)𝑋𝜎0+𝑡𝑖 𝑖 𝑑𝑡

Definition 3.5.4 (I�).

𝐼2(𝜈, 𝜖,𝑋, 𝑇 , 𝜎1) ∶=
1
2𝜋𝑖 ∫

𝜎0

𝜎1

(−𝜁′
𝜁 (𝜎 − 𝑖𝑇 ))ℳ( ̃1𝜖)(𝜎 − 𝑖𝑇 )𝑋𝜎−𝑖𝑇 𝑑𝜎

Definition 3.5.5 (I��).

𝐼37(𝜈, 𝜖,𝑋, 𝑇 , 𝜎1) ∶=
1
2𝜋𝑖 ∫

𝑇

−𝑇
(−𝜁′

𝜁 (𝜎1 + 𝑡𝑖))ℳ( ̃1𝜖)(𝜎1 + 𝑡𝑖)𝑋𝜎1+𝑡𝑖 𝑖 𝑑𝑡

Definition 3.5.6 (I�).

𝐼8(𝜈, 𝜖,𝑋, 𝑇 , 𝜎1) ∶=
1
2𝜋𝑖 ∫

𝜎0

𝜎1

(−𝜁′
𝜁 (𝜎 + 𝑇 𝑖))ℳ( ̃1𝜖)(𝜎 + 𝑇 𝑖)𝑋𝜎+𝑇𝑖 𝑑𝜎

Definition 3.5.7 (I�).

𝐼9(𝜈, 𝜖,𝑋, 𝑇 ) ∶= 1
2𝜋𝑖 ∫

∞

𝑇
(−𝜁′

𝜁 (𝜎0 + 𝑡𝑖))ℳ( ̃1𝜖)(𝜎0 + 𝑡𝑖)𝑋𝜎0+𝑡𝑖 𝑖 𝑑𝑡

Definition 3.5.8 (I�).

𝐼3(𝜈, 𝜖,𝑋, 𝑇 , 𝜎1) ∶=
1
2𝜋𝑖 ∫

−3

−𝑇
(−𝜁′

𝜁 (𝜎1 + 𝑡𝑖))ℳ( ̃1𝜖)(𝜎1 + 𝑡𝑖)𝑋𝜎1+𝑡𝑖 𝑖 𝑑𝑡

Definition 3.5.9 (I�).

𝐼7(𝜈, 𝜖,𝑋, 𝑇 , 𝜎1) ∶=
1
2𝜋𝑖 ∫

𝑇

3
(−𝜁′

𝜁 (𝜎1 + 𝑡𝑖))ℳ( ̃1𝜖)(𝜎1 + 𝑡𝑖)𝑋𝜎1+𝑡𝑖 𝑖 𝑑𝑡
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Definition 3.5.10 (I�).

𝐼4(𝜈, 𝜖,𝑋, 𝜎1, 𝜎2) ∶=
1
2𝜋𝑖 ∫

𝜎1

𝜎2

(−𝜁′
𝜁 (𝜎 − 3𝑖))ℳ( ̃1𝜖)(𝜎 − 3𝑖)𝑋𝜎−3𝑖 𝑑𝜎

Definition 3.5.11 (I�).

𝐼6(𝜈, 𝜖,𝑋, 𝜎1, 𝜎2) ∶=
1
2𝜋𝑖 ∫

𝜎1

𝜎2

(−𝜁′
𝜁 (𝜎 + 3𝑖))ℳ( ̃1𝜖)(𝜎 + 3𝑖)𝑋𝜎+3𝑖 𝑑𝜎

Definition 3.5.12 (I�).

𝐼5(𝜈, 𝜖,𝑋, 𝜎2) ∶=
1
2𝜋𝑖 ∫

3

−3
(−𝜁′

𝜁 (𝜎2 + 𝑡𝑖))ℳ( ̃1𝜖)(𝜎2 + 𝑡𝑖)𝑋𝜎2+𝑡𝑖 𝑖 𝑑𝑡

Lemma 3.5.3 (dlog-riemannZeta-bdd-on-vertical-lines). For 𝜎0 > 1, there exists a constant
𝐶 > 0 such that

∀𝑡 ∈ R, ∥ 𝜁
′(𝜎0 + 𝑡𝑖)
𝜁(𝜎0 + 𝑡𝑖) ∥ ≤ 𝐶.

Proof. Write as Dirichlet series and estimate trivially using Theorem 3.5.1.

Lemma 3.5.4 (SmoothedChebyshevPull1-aux-integrable). The integrand

𝜁′(𝑠)/𝜁(𝑠)ℳ(1̃𝜖)(𝑠)𝑋𝑠

is integrable on the contour 𝜎0 + 𝑡𝑖 for 𝑡 ∈ R and 𝜎0 > 1.

Proof. The 𝜁′(𝑠)/𝜁(𝑠) term is bounded, as is 𝑋𝑠, and the smoothing function ℳ(1̃𝜖)(𝑠)
decays like 1/|𝑠|2 by Theorem 3.3.10. Actually, we already know that ℳ(1̃𝜖)(𝑠) is integrable
from Theorem 3.5.1, so we should just need to bound the rest.

Lemma 3.5.5 (BddAboveOnRect). Let 𝑔 ∶ C → C be a holomorphic function on a rectan-
gle, then 𝑔 is bounded above on the rectangle.

Proof. Use the compactness of the rectangle and the fact that holomorphic functions are
continuous.

Theorem 3.5.4 (SmoothedChebyshevPull1). We have that

𝜓𝜖(𝑋) = ℳ(1̃𝜖)(1)𝑋1 + 𝐼1 − 𝐼2 + 𝐼37 + 𝐼8 + 𝐼9.

Proof. Pull rectangle contours and evaluate the pole at 𝑠 = 1.
Next pull contours to another box.

Lemma 3.5.6 (SmoothedChebyshevPull2). We have that

𝐼37 = 𝐼3 − 𝐼4 + 𝐼5 + 𝐼6 + 𝐼7.

Proof. Mimic the proof of Lemma 3.5.4.

We insert this information in 𝜓𝜖. We add and subtract the integral over the box [1 −
𝛿, 2] ×ℂ [−𝑇 , 𝑇 ], which we evaluate as follows
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Theorem 3.5.5 (ZetaBoxEval). For all 𝜖 > 0 sufficiently close to 0, the rectangle integral
over [1 − 𝛿, 2] ×ℂ [−𝑇 , 𝑇 ] of the integrand in 𝜓𝜖 is

𝑋1

1 ℳ(1̃𝜖)(1) = 𝑋(1 + 𝑂(𝜖)),

where the implicit constant is independent of 𝑋.

Proof. Unfold the definitions and apply Lemma 3.3.11.

It remains to estimate all of the integrals.
This auxiliary lemma is useful for what follows.

Lemma 3.5.7 (IBound-aux1). Given a natural number 𝑘 and a real number 𝑋0 > 0, there
exists 𝐶 ≥ 1 so that for all 𝑋 ≥ 𝑋0,

log𝑘 𝑋 ≤ 𝐶 ⋅ 𝑋.

Proof. We use the fact that log𝑘 𝑋/𝑋 goes to 0 as 𝑋 → ∞. Then we use the extreme value
theorem to find a constant 𝐶 that works for all 𝑋 ≥ 𝑋0.

Lemma 3.5.8 (I1Bound). We have that

|𝐼1(𝜈, 𝜖,𝑋, 𝑇 ) | ≪ 𝑋
𝜖𝑇 .

Same with 𝐼9.
Proof. Unfold the definitions and apply the triangle inequality.

|𝐼1(𝜈, 𝜖,𝑋, 𝑇 )| = ∣ 1
2𝜋𝑖 ∫

−𝑇

−∞
(−𝜁′

𝜁 (𝜎0 + 𝑡𝑖))ℳ( ̃1𝜖)(𝜎0 + 𝑡𝑖)𝑋𝜎0+𝑡𝑖 𝑖 𝑑𝑡∣

By Theorem 3.5.3 (once fixed!!), 𝜁′/𝜁(𝜎0 + 𝑡𝑖) is bounded by 𝜁′/𝜁(𝜎0), and Theorem 3.4.14
gives ≪ 1/(𝜎0 − 1) for the latter. This gives:

≤ 1
2𝜋 ∣∫

−𝑇

−∞
𝐶 log𝑋 ⋅ 𝐶′

𝜖|𝜎0 + 𝑡𝑖|2𝑋
𝜎0 𝑑𝑡∣ ,

where we used Theorem 3.3.10. Continuing the calculation, we have

≤ log𝑋 ⋅ 𝐶″𝑋𝜎0

𝜖 ∫
−𝑇

−∞

1
𝑡2 𝑑𝑡 ≤ 𝐶‴𝑋 log𝑋

𝜖𝑇 ,

where we used that 𝜎0 = 1 + 1/ log𝑋, and 𝑋𝜎0 = 𝑋 ⋅ 𝑋1/ log𝑋 = 𝑒 ⋅ 𝑋.

Lemma 3.5.9 (I2Bound). Assuming a bound of the form of Lemma 3.4.28 we have that

|𝐼2(𝜈, 𝜖,𝑋, 𝑇 )| ≪ 𝑋
𝜖𝑇 .
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Proof. Unfold the definitions and apply the triangle inequality.

|𝐼2(𝜈, 𝜖,𝑋, 𝑇 , 𝜎1)| = ∣ 1
2𝜋𝑖 ∫

𝜎0

𝜎1

(−𝜁′
𝜁 (𝜎 − 𝑇 𝑖)) ⋅ℳ( ̃1𝜖)(𝜎 − 𝑇 𝑖) ⋅ 𝑋𝜎−𝑇𝑖 𝑑𝜎∣

≤ 1
2𝜋 ∫

𝜎0

𝜎1

𝐶 ⋅ log𝑇 9 𝐶′

𝜖|𝜎 − 𝑇 𝑖|2𝑋
𝜎0 𝑑𝜎 ≤ 𝐶″ ⋅ 𝑋 log𝑇 9

𝜖𝑇 2 ,

where we used Theorems 3.3.10, the hypothesised bound on zeta and the fact that 𝑋𝜎 ≤
𝑋𝜎0 = 𝑋 ⋅ 𝑋1/ log𝑋 = 𝑒 ⋅ 𝑋. Since 𝑇 > 3, we have log𝑇 9 ≤ 𝐶‴𝑇 .
Lemma 3.5.10 (I8I2). Symmetry between 𝐼2 and 𝐼8:

𝐼8(𝜈, 𝜖,𝑋, 𝑇 ) = −𝐼2(𝜈, 𝜖,𝑋, 𝑇 ).

Proof. This is a direct consequence of the definitions of 𝐼2 and 𝐼8.
Lemma 3.5.11 (I8Bound). We have that

|𝐼8(𝜈, 𝜖,𝑋, 𝑇 )| ≪ 𝑋
𝜖𝑇 .

Proof. We deduce this from the corresponding bound for 𝐼2, using the symmetry between
𝐼2 and 𝐼8.
Lemma 3.5.12 (log-pow-over-xsq-integral-bounded). For every 𝑛 there is some absolute
constant 𝐶 > 0 such that

∫
𝑇

3

(log𝑥)9
𝑥2 𝑑𝑥 < 𝐶

Proof. Induct on n and just integrate by parts.

Lemma 3.5.13 (I3Bound). Assuming a bound of the form of Lemma 3.4.28 we have that

|𝐼3(𝜈, 𝜖,𝑋, 𝑇 )| ≪ 𝑋
𝜖 𝑋− 𝐴

(log𝑇)9 .

Same with 𝐼7.
Proof. Unfold the definitions and apply the triangle inequality.

|𝐼3(𝜈, 𝜖,𝑋, 𝑇 , 𝜎1)| = ∣ 1
2𝜋𝑖 ∫

3

−𝑇
(−𝜁′

𝜁 (𝜎1 + 𝑡𝑖))ℳ( ̃1𝜖)(𝜎1 + 𝑡𝑖)𝑋𝜎1+𝑡𝑖 𝑖 𝑑𝑡∣

≤ 1
2𝜋 ∫

3

−𝑇
𝐶 ⋅ log 𝑡9 𝐶′

𝜖|𝜎1 + 𝑡𝑖|2𝑋
𝜎1 𝑑𝑡,

where we used Theorems 3.3.10 and the hypothesised bound on zeta. Now we estimate
𝑋𝜎1 = 𝑋 ⋅ 𝑋−𝐴/ log𝑇9 , and the integral is absolutely bounded.

Lemma 3.5.14 (I4Bound). We have that

|𝐼4(𝜈, 𝜖,𝑋, 𝜎1, 𝜎2)| ≪
𝑋
𝜖 𝑋− 𝐴

(log𝑇)9 .

Same with 𝐼6.
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Proof. The analysis of 𝐼4 is similar to that of 𝐼2, (in Lemma 3.5.9) but even easier. Let 𝐶
be the sup of −𝜁′/𝜁 on the curve 𝜎2+3𝑖 to 1+3𝑖 (this curve is compact, and away from the
pole at 𝑠 = 1). Apply Theorem 3.3.10 to get the bound 1/(𝜖|𝑠|2), which is bounded by 𝐶′/𝜖.
And 𝑋𝑠 is bounded by 𝑋𝜎1 = 𝑋 ⋅ 𝑋−𝐴/ log𝑇9 . Putting these together gives the result.

Lemma 3.5.15 (I5Bound). We have that

|𝐼5(𝜈, 𝜖,𝑋, 𝜎2)| ≪
𝑋𝜎2

𝜖 .

Proof. Here 𝜁′/𝜁 is absolutely bounded on the compact interval 𝜎2 + 𝑖[−3, 3], and 𝑋𝑠 is
bounded by 𝑋𝜎2 . Using Theorem 3.3.10 gives the bound 1/(𝜖|𝑠|2), which is bounded by
𝐶′/𝜖. Putting these together gives the result.

3.6 MediumPNT
Theorem 3.6.1 (MediumPNT). We have

∑
𝑛≤𝑥

Λ(𝑛) = 𝑥 + 𝑂(𝑥 exp(−𝑐(log𝑥)1/10)).

Proof. Evaluate the integrals.

36



Chapter 4

Third Approach

4.1 Hadamard factorization
In this file, we prove the Hadamard Factorization theorem for functions of finite order, and
prove that the zeta function is such.

4.2 Hoffstein-Lockhart
In this file, we use the Hoffstein-Lockhart construction to prove a zero-free region for zeta.

Hoffstein-Lockhart + Goldfeld-Hoffstein-Liemann
Instead of the “slick” identity 3+4 cos 𝜃+cos 2𝜃 = 2(cos 𝜃+1)2 ≥ 0, we use the following

more robust identity.

Theorem 4.2.1. For any 𝑝 > 0 and 𝑡 ∈ R,

3 + 𝑝2𝑖𝑡 + 𝑝−2𝑖𝑡 + 2𝑝𝑖𝑡 + 2𝑝−𝑖𝑡 ≥ 0.
Proof. This follows immediately from the identity

|1 + 𝑝𝑖𝑡 + 𝑝−𝑖𝑡|2 = 1 + 𝑝2𝑖𝑡 + 𝑝−2𝑖𝑡 + 2𝑝𝑖𝑡 + 2𝑝−𝑖𝑡 + 2.

[Note: identities of this type will work in much greater generality, especially for higher
degree 𝐿-functions.]

This means that, for fixed 𝑡, we define the following alternate function.

Definition 4.2.1. For 𝜎 > 1 and 𝑡 ∈ R, define

𝐹(𝜎) ∶= 𝜁3(𝜎)𝜁2(𝜎 + 𝑖𝑡)𝜁2(𝜎 − 𝑖𝑡)𝜁(𝜎 + 2𝑖𝑡)𝜁(𝜎 − 2𝑖𝑡).
Theorem 4.2.2. Then 𝐹 is real-valued, and whence 𝐹(𝜎) ≥ 1 there.

Proof. That log𝐹(𝜎) ≥ 0 for 𝜎 > 1 follows from Theorem 4.2.1.

[Note: I often prefer to avoid taking logs of functions that, even if real-valued, have to be
justified as being such. Instead, I like to start with “logF” as a convergent Dirichlet series,
show that it is real-valued and non-negative, and then exponentiate...]

From this and Hadamard factorization, we deduce the following.
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Theorem 4.2.3. There is a constant 𝑐 > 0, so that 𝜁(𝑠) does not vanish in the region
𝜎 > 1 − 𝑐

log 𝑡 , and moreover,

−𝜁′
𝜁 (𝜎 + 𝑖𝑡) ≪ (log 𝑡)2

there.

Proof. Use Theorem 4.2.2 and Hadamard factorization.

This allows us to quantify precisely the relationship between 𝑇 and 𝛿 in Theorem 3.4.25....

4.3 Strong PNT
Definition 4.3.1. Given a complex function 𝑓 , we define the function

𝑔(𝑧) ∶= {
𝑓(𝑧)
𝑧 , 𝑧 ≠ 0;

𝑓 ′(0), 𝑧 = 0.

Lemma 4.3.1. Let 𝑓 be a complex function and let 𝑧 ≠ 0. Then, with 𝑔 defined as in
Definition 4.3.1,

𝑔(𝑧) = 𝑓(𝑧)
𝑧 .

Proof. This follows directly from the definition of 𝑔.
Lemma 4.3.2. Let 𝑓 be a complex function analytic on an open set 𝑠 containing 0 such
that 𝑓(0) = 0. Then, with 𝑔 defined as in Definition 4.3.1, 𝑔 is analytic on 𝑠.
Proof. We need to show that 𝑔 is complex differentiable at every point in 𝑠. For 𝑧 ≠ 0, this
follows directly from the definition of 𝑔 and the fact that 𝑓 is analytic on 𝑠. For 𝑧 = 0, we
use the definition of the derivative and the fact that 𝑓(0) = 0:

lim
𝑧→0

𝑔(𝑧) − 𝑔(0)
𝑧 − 0 = lim

𝑧→0

𝑓(𝑧)
𝑧 − 𝑓 ′(0)

𝑧 = lim
𝑧→0

𝑓(𝑧) − 𝑓 ′(0)𝑧
𝑧2 = lim

𝑧→0
𝑓(𝑧) − 𝑓(0) − 𝑓 ′(0)(𝑧 − 0)

(𝑧 − 0)2 = 0,

where the last equality follows from the definition of the derivative of 𝑓 at 0. Thus, 𝑔 is
complex differentiable at 0 with derivative 0, completing the proof.

Lemma 4.3.3. Let 𝑓 be a complex function analytic on the closed ball |𝑧| ≤ 𝑅 such that
𝑓(0) = 0. Then, with 𝑔 defined as in Definition 4.3.1, 𝑔 is analytic on |𝑧| ≤ 𝑅.

Proof. The proof is similar to that of Lemma 4.3.2, but we need to consider two cases: when
𝑥 is on the boundary of the closed ball and when it is in the interior. In the first case, we take
a small open ball around 𝑥 that lies entirely within the closed ball, and apply Lemma 4.3.2
on this smaller ball. In the second case, we can take the entire open ball centered at 0 with
radius 𝑅, and again apply Lemma 4.3.2. In both cases, we use the fact that 𝑓(0) = 0 to
ensure that the removable singularity at 0 is handled correctly.

Definition 4.3.2. Given a complex function 𝑓 and a real number 𝑀 , we define the function

𝑓𝑀(𝑧) ∶= 𝑔(𝑧)
2𝑀 − 𝑓(𝑧) ,

where 𝑔 is defined as in Definition 4.3.1.

38



Lemma 4.3.4. Let 𝑀 > 0. Let 𝑓 be analytic on the closed ball |𝑧| ≤ 𝑅 such that 𝑓(0) = 0
and suppose that 2𝑀−𝑓(𝑧) ≠ 0 for all |𝑧| ≤ 𝑅. Then, with 𝑓𝑀 defined as in Definition 4.3.2,
𝑓𝑀 is analytic on |𝑧| ≤ 𝑅.

Proof. This follows directly from Lemma 4.3.3 and the fact that the difference of two analytic
functions is analytic.

Lemma 4.3.5. Let 𝑀 > 0 and let 𝑥 be a complex number such that ℜ𝑥 ≤ 𝑀 . Then,
|𝑥| ≤ |2𝑀 − 𝑥|.
Proof. We square both sides and simplify to obtain the equivalent inequality

0 ≤ 4𝑀2 − 4𝑀ℜ𝑥,

which follows directly from the assumption ℜ𝑥 ≤ 𝑀 and the positivity of 𝑀 .

Theorem 4.3.1 (borelCaratheodory-closedBall). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on
|𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. Then for any
0 < 𝑟 < 𝑅,

sup
|𝑧|≤𝑟

|𝑓(𝑧)| ≤ 2𝑀𝑟
𝑅 − 𝑟 .

Proof. Let
𝑓𝑀(𝑧) = 𝑓(𝑧)/𝑧

2𝑀 − 𝑓(𝑧) .

Note that 2𝑀 − 𝑓(𝑧) ≠ 0 because ℜ(2𝑀 − 𝑓(𝑧)) = 2𝑀 − ℜ𝑓(𝑧) ≥ 𝑀 > 0. Additionally,
since 𝑓(𝑧) has a zero at 0, we know that 𝑓(𝑧)/𝑧 is analytic on |𝑧| ≤ 𝑅. Likewise, 𝑓𝑀(𝑧) is
analytic on |𝑧| ≤ 𝑅.

Now note that |𝑓(𝑧)| ≤ |2𝑀 − 𝑓(𝑧)| since ℜ𝑓(𝑧) ≤ 𝑀 . Thus we have that

|𝑓𝑀(𝑧)| = |𝑓(𝑧)|/|𝑧|
|2𝑀 − 𝑓(𝑧)| ≤

1
|𝑧| .

Now by the maximum modulus principle, we know the maximum of |𝑓𝑀 | must occur on the
boundary where |𝑧| = 𝑅. Thus, |𝑓𝑀(𝑧)| ≤ 1/𝑅 for all |𝑧| ≤ 𝑅. So for |𝑧| = 𝑟 we have

|𝑓𝑀(𝑧)| = |𝑓(𝑧)|/𝑟
|2𝑀 − 𝑓(𝑧)| ≤

1
𝑅 ⟹ 𝑅 |𝑓(𝑧)| ≤ 𝑟 |2𝑀 − 𝑓(𝑧)| ≤ 2𝑀𝑟 + 𝑟 |𝑓(𝑧)|.

Which by algebraic manipulation gives

|𝑓(𝑧)| ≤ 2𝑀𝑟
𝑅 − 𝑟 .

Once more, by the maximum modulus principle, we know the maximum of |𝑓| must occur
on the boundary where |𝑧| = 𝑟. Thus, the desired result immediately follows

Lemma 4.3.6 (DerivativeBound). Let 𝑅, 𝑀 > 0 and 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic
on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. Then we have that

|𝑓 ′(𝑧)| ≤ 2𝑀(𝑟′)2
(𝑅 − 𝑟′)(𝑟′ − 𝑟)2

for all |𝑧| ≤ 𝑟.
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Proof. By Lemma 4.3.7 we know that

𝑓 ′(𝑧) = 1
2𝜋𝑖 ∮|𝑤|=𝑟′

𝑓(𝑤)
(𝑤 − 𝑧)2 𝑑𝑤 = 1

2𝜋 ∫
2𝜋

0

𝑟′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 𝑑𝑡.

Thus,

|𝑓 ′(𝑧)| = ∣ 12𝜋 ∫
2𝜋

0

𝑟′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 𝑑𝑡∣ ≤ 1

2𝜋 ∫
2𝜋

0
∣ 𝑟

′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 ∣ 𝑑𝑡. (4.1)

Now applying Theorem ??, and noting that 𝑟′ − 𝑟 ≤ |𝑟′𝑒𝑖𝑡 − 𝑧|, we have that

∣ 𝑟
′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 ∣ ≤ 2𝑀(𝑟′)2

(𝑅 − 𝑟′)(𝑟′ − 𝑟)2 .

Substituting this into Equation (4.2) and evaluating the integral completes the proof.

This upstreamed from https://github.com/math-inc/strongpnt/tree/main

Lemma 4.3.7 (cauchy-formula-deriv). Let 𝑓 be analytic on |𝑧| ≤ 𝑅. For any 𝑧 with |𝑧| ≤ 𝑟
and any 𝑟′ with 0 < 𝑟 < 𝑟′ < 𝑅 we have

𝑓 ′(𝑧) = 1
2𝜋𝑖 ∮|𝑤|=𝑟′

𝑓(𝑤)
(𝑤 − 𝑧)2 𝑑𝑤 = 1

2𝜋 ∫
2𝜋

0

𝑟′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 𝑑𝑡.

Proof. This is just Cauchy’s integral formula for derivatives.

Lemma 4.3.8 (DerivativeBound). Let 𝑅, 𝑀 > 0 and 0 < 𝑟 < 𝑟′ < 𝑅. Let 𝑓 be analytic
on |𝑧| ≤ 𝑅 such that 𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. Then we have that

|𝑓 ′(𝑧)| ≤ 2𝑀(𝑟′)2
(𝑅 − 𝑟′)(𝑟′ − 𝑟)2

for all |𝑧| ≤ 𝑟.
Proof. By Lemma 4.3.7 we know that

𝑓 ′(𝑧) = 1
2𝜋𝑖 ∮|𝑤|=𝑟′

𝑓(𝑤)
(𝑤 − 𝑧)2 𝑑𝑤 = 1

2𝜋 ∫
2𝜋

0

𝑟′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 𝑑𝑡.

Thus,

|𝑓 ′(𝑧)| = ∣ 12𝜋 ∫
2𝜋

0

𝑟′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 𝑑𝑡∣ ≤ 1

2𝜋 ∫
2𝜋

0
∣ 𝑟

′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 ∣ 𝑑𝑡. (4.2)

Now applying Theorem ??, and noting that 𝑟′ − 𝑟 ≤ |𝑟′𝑒𝑖𝑡 − 𝑧|, we have that

∣ 𝑟
′𝑒𝑖𝑡 𝑓(𝑟′𝑒𝑖𝑡)
(𝑟′𝑒𝑖𝑡 − 𝑧)2 ∣ ≤ 2𝑀(𝑟′)2

(𝑅 − 𝑟′)(𝑟′ − 𝑟)2 .

Substituting this into Equation (4.2) and evaluating the integral completes the proof.
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Theorem 4.3.2 (BorelCaratheodoryDeriv). Let 𝑅, 𝑀 > 0. Let 𝑓 be analytic on |𝑧| ≤ 𝑅
such that 𝑓(0) = 0 and suppose ℜ𝑓(𝑧) ≤ 𝑀 for all |𝑧| ≤ 𝑅. Then for any 0 < 𝑟 < 𝑅,

|𝑓 ′(𝑧)| ≤ 16𝑀𝑅2

(𝑅 − 𝑟)3

for all |𝑧| ≤ 𝑟.
Proof. Using Lemma 4.3.8 with 𝑟′ = (𝑅 + 𝑟)/2, and noting that 𝑟 < 𝑅, we have that

|𝑓 ′(𝑧)| ≤ 4𝑀(𝑅 + 𝑟)2
(𝑅 − 𝑟)3 ≤ 16𝑀𝑅2

(𝑅 − 𝑟)3 .

Theorem 4.3.3 (LogOfAnalyticFunction). Let 0 < 𝑟 < 𝑅 < 1. Let 𝐵 ∶ D𝑅 → C be
analytic on neighborhoods of points in D𝑅 with 𝐵(𝑧) ≠ 0 for all 𝑧 ∈ D𝑅. Then there exists
𝐽𝐵 ∶ D𝑟 → C that is analytic on neighborhoods of points in D𝑟 such that

• 𝐽𝐵(0) = 0
• 𝐽 ′

𝐵(𝑧) = 𝐵′(𝑧)/𝐵(𝑧)
• log |𝐵(𝑧)| − log |𝐵(0)| = ℜ𝐽𝐵(𝑧)

for all 𝑧 ∈ D𝑟.

Proof. We let 𝐽𝐵(𝑧) = Log𝐵(𝑧) − Log𝐵(0). Then clearly, 𝐽𝐵(0) = 0 and 𝐽 ′
𝐵(𝑧) =

𝐵′(𝑧)/𝐵(𝑧). Showing the third property is a little more difficult, but by no standards
terrible. Exponentiating 𝐽𝐵(𝑧) we have that

exp(𝐽𝐵(𝑧)) = exp(Log𝐵(𝑧) − Log𝐵(0)) = 𝐵(𝑧)
𝐵(0) ⟹ 𝐵(𝑧) = 𝐵(0) exp(𝐽𝐵(𝑧)).

Now taking the modulus

|𝐵(𝑧)| = |𝐵(0)| ⋅ | exp(𝐽𝐵(𝑧))| = |𝐵(0)| ⋅ exp(ℜ𝐽𝐵(𝑧)).

Taking the real logarithm of both sides and rearranging gives the third point.

Definition 4.3.3 (SetOfZeros). Let 𝑅 > 0 and 𝑓 ∶ D𝑅 → C. Define the set of zeros
𝒦𝑓(𝑅) = {𝜌 ∈ C ∶ |𝜌| ≤ 𝑅, 𝑓(𝜌) = 0}.
Definition 4.3.4 (ZeroOrder). Let 0 < 𝑅 < 1 and 𝑓 ∶ C → C be analtyic on neighborhoods
of points in D1. For any zero 𝜌 ∈ 𝒦𝑓(𝑅), we define 𝑚𝑓(𝜌) as the order of the zero 𝜌 w.r.t 𝑓 .

Lemma 4.3.9 (ZeroFactorization). Let 𝑓 ∶ D1 → C be analytic on neighborhoods of points
in D1 with 𝑓(0) ≠ 0. For all 𝜌 ∈ 𝒦𝑓(1) there exists ℎ𝜌(𝑧) that is analytic at 𝜌, ℎ𝜌(𝜌) ≠ 0,
and 𝑓(𝑧) = (𝑧 − 𝜌)𝑚𝑓(𝜌) ℎ𝜌(𝑧).

Proof. Since 𝑓 is analytic on neighborhoods of points in D1 we know that there exists a
series expansion about 𝜌:

𝑓(𝑧) = ∑
0≤𝑛

𝑎𝑛 (𝑧 − 𝜌)𝑛.
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Now if we let 𝑚 be the smallest number such that 𝑎𝑚 ≠ 0, then

𝑓(𝑧) = ∑
0≤𝑛

𝑎𝑛 (𝑧 − 𝜌)𝑛 = ∑
𝑚≤𝑛

𝑎𝑛 (𝑧 − 𝜌)𝑛 = (𝑧 − 𝜌)𝑚 ∑
𝑚≤𝑛

𝑎𝑛 (𝑧 − 𝜌)𝑛−𝑚 = (𝑧 − 𝜌)𝑚 ℎ𝜌(𝑧).

Trivially, ℎ𝜌(𝑧) is analytic at 𝜌 (we have written down the series expansion); now note that

ℎ𝜌(𝜌) = ∑
𝑚≤𝑛

𝑎𝑛(𝜌 − 𝜌)𝑛−𝑚 = ∑
𝑚≤𝑛

𝑎𝑛0𝑛−𝑚 = 𝑎𝑚 ≠ 0.

Definition 4.3.5 (CFunction). Let 0 < 𝑟 < 𝑅 < 1, and 𝑓 ∶ D1 → C be analytic on
neighborhoods of points in D1 with 𝑓(0) ≠ 0. We define a function 𝐶𝑓 ∶ D𝑅 → C as follows.
This function is constructed by dividing 𝑓(𝑧) by a polynomial whose roots are the zeros of
𝑓 inside D𝑟.

𝐶𝑓(𝑧) =

⎧{{
⎨{{⎩

𝑓(𝑧)
∏𝜌∈𝒦𝑓(𝑟)(𝑧 − 𝜌)𝑚𝑓(𝜌)

for 𝑧 ∉ 𝒦𝑓(𝑟)

ℎ𝑧(𝑧)
∏𝜌∈𝒦𝑓(𝑟)∖{𝑧}(𝑧 − 𝜌)𝑚𝑓(𝜌)

for 𝑧 ∈ 𝒦𝑓(𝑟)

where ℎ𝑧(𝑧) comes from Lemma 4.3.9.

Definition 4.3.6 (BlaschkeB). Let 0 < 𝑟 < 𝑅 < 1, and 𝑓 ∶ D1 → C be analytic on
neighborhoods of points in D1 with 𝑓(0) ≠ 0. We define a function 𝐵𝑓 ∶ D𝑅 → C as follows.

𝐵𝑓(𝑧) = 𝐶𝑓(𝑧) ∏
𝜌∈𝒦𝑓(𝑟)

(𝑅 − 𝑧𝜌
𝑅 )

𝑚𝑓(𝜌)

Lemma 4.3.10 (BlaschkeOfZero). Let 0 < 𝑟 < 𝑅 < 1, and 𝑓 ∶ D1 → C be analytic on
neighborhoods of points in D1 with 𝑓(0) ≠ 0. Then

|𝐵𝑓(0)| = |𝑓(0)| ∏
𝜌∈𝒦𝑓(𝑟)

( 𝑅
|𝜌|)

𝑚𝑓(𝜌)
.

Proof. Since 𝑓(0) ≠ 0, we know that 0 ∉ 𝒦𝑓(𝑟). Thus,

𝐶𝑓(0) =
𝑓(0)

∏
𝜌∈𝒦𝑓(𝑟)

(−𝜌)𝑚𝑓(𝜌)
.

Thus, substituting this into Definition 4.3.6,

|𝐵𝑓(0)| = |𝐶𝑓(0)| ∏
𝜌∈𝒦𝑓(𝑟)

𝑅𝑚𝑓(𝜌) = |𝑓(0)| ∏
𝜌∈𝒦𝑓(𝑟)

( 𝑅
|𝜌|)

𝑚𝑓(𝜌)
.

Lemma 4.3.11 (DiskBound). Let 𝐵 > 1 and 0 < 𝑅 < 1. If 𝑓 ∶ C → C is a function
analytic on neighborhoods of points in D1 with |𝑓(𝑧)| ≤ 𝐵 for |𝑧| ≤ 𝑅, then |𝐵𝑓(𝑧)| ≤ 𝐵 for
|𝑧| ≤ 𝑅 also.
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Proof. For |𝑧| = 𝑅, we know that 𝑧 ∉ 𝒦𝑓(𝑟). Thus,

𝐶𝑓(𝑧) =
𝑓(𝑧)

∏
𝜌∈𝒦𝑓(𝑟)

(𝑧 − 𝜌)𝑚𝑓(𝜌)
.

Thus, substituting this into Definition 4.3.6,

|𝐵𝑓(𝑧)| = |𝑓(𝑧)| ∏
𝜌∈𝒦𝑓(𝑟)

∣𝑅 − 𝑧𝜌/𝑅
𝑧 − 𝜌 ∣

𝑚𝑓(𝜌)
.

But note that
∣𝑅 − 𝑧𝜌/𝑅

𝑧 − 𝜌 ∣ = |𝑅2 − 𝑧𝜌|/𝑅
|𝑧 − 𝜌| = |𝑧| ⋅ |𝑧 − 𝜌|/𝑅

|𝑧 − 𝜌| = 1.

So we have that |𝐵𝑓(𝑧)| = |𝑓(𝑧)| ≤ 𝐵 when |𝑧| = 𝑅. Now by the maximum modulus
principle, we know that the maximum of |𝐵𝑓 | must occur on the boundary where |𝑧| = 𝑅.
Thus |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| ≤ 𝑅.

Theorem 4.3.4 (ZerosBound). Let 𝐵 > 1 and 0 < 𝑟 < 𝑅 < 1. If 𝑓 ∶ C → C is a function
analytic on neighborhoods of points in D1 with 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 for |𝑧| ≤ 𝑅, then

∑
𝜌∈𝒦𝑓(𝑟)

𝑚𝑓(𝜌) ≤
log𝐵

log(𝑅/𝑟) .

Proof. Since 𝑓(0) = 1, we know that 0 ∉ 𝒦𝑓(𝑟). Thus,

𝐶𝑓(0) =
𝑓(0)

∏
𝜌∈𝒦𝑓(𝑟)

(−𝜌)𝑚𝑓(𝜌)
.

Thus, substituting this into Definition 4.3.6,

(𝑅/𝑟)∑𝜌∈𝒦𝑓(𝑟) 𝑚𝑓(𝜌) = ∏
𝜌∈𝒦𝑓(𝑟)

(𝑅
𝑟 )

𝑚𝑓(𝜌)
≤ ∏

𝜌∈𝒦𝑓(𝑟)
( 𝑅
|𝜌|)

𝑚𝑓(𝜌)
= |𝐵𝑓(0)| ≤ 𝐵

whereby Lemma 4.3.11 we know that |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| ≤ 𝑅. Taking the logarithm of
both sides and rearranging gives the desired result.

Definition 4.3.7 (JBlaschke). Let 𝐵 > 1 and 0 < 𝑅 < 1. If 𝑓 ∶ C → C is a function
analytic on neighborhoods of points in D1 with 𝑓(0) = 1, define 𝐿𝑓(𝑧) = 𝐽𝐵𝑓

(𝑧) where 𝐽 is
from Theorem 4.3.3 and 𝐵𝑓 is from Definition 4.3.6.

Lemma 4.3.12 (BlaschkeNonZero). Let 0 < 𝑟 < 𝑅 < 1 and 𝑓 ∶ D1 → C be analytic on
neighborhoods of points in D1. Then 𝐵𝑓(𝑧) ≠ 0 for all 𝑧 ∈ D𝑟.

Proof. Suppose that 𝑧 ∈ 𝒦𝑓(𝑟). Then we have that

𝐶𝑓(𝑧) =
ℎ𝑧(𝑧)

∏
𝜌∈𝒦𝑓(𝑟)∖{𝑧}

(𝑧 − 𝜌)𝑚𝑓(𝜌)
.
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where ℎ𝑧(𝑧) ≠ 0 according to Lemma 4.3.9. Thus, substituting this into Definition 4.3.6,

|𝐵𝑓(𝑧)| = |ℎ𝑧(𝑧)| ⋅ ∣𝑅 − |𝑧|2
𝑅 ∣

𝑚𝑓(𝑧)
∏

𝜌∈𝒦𝑓(𝑟)∖{𝑧}
∣𝑅 − 𝑧𝜌/𝑅

𝑧 − 𝜌 ∣
𝑚𝑓(𝜌)

. (4.3)

Trivially, |ℎ𝑧(𝑧)| ≠ 0. Now note that

∣𝑅 − |𝑧|2
𝑅 ∣ = 0 ⟹ |𝑧| = 𝑅.

However, this is a contradiction because 𝑧 ∈ D𝑟 tells us that |𝑧| ≤ 𝑟 < 𝑅. Similarly, note
that

∣𝑅 − 𝑧𝜌/𝑅
𝑧 − 𝜌 ∣ = 0 ⟹ |𝑧| = 𝑅2

|𝜌| .

However, this is also a contradiction because 𝜌 ∈ 𝒦𝑓(𝑟) tells us that 𝑅 < 𝑅2/|𝜌| = |𝑧|, but
𝑧 ∈ D𝑟 tells us that |𝑧| ≤ 𝑟 < 𝑅. So, we know that

∣𝑅 − |𝑧|2
𝑅 ∣ ≠ 0 and ∣𝑅 − 𝑧𝜌/𝑅

𝑧 − 𝜌 ∣ ≠ 0 for all 𝜌 ∈ 𝒦𝑓(𝑟) ∖ {𝑧}.

Applying this to Equation (4.3) we have that |𝐵𝑓(𝑧)| ≠ 0. So, 𝐵𝑓(𝑧) ≠ 0.
Now suppose that 𝑧 ∉ 𝒦𝑓(𝑟). Then we have that

𝐶𝑓(𝑧) =
𝑓(𝑧)

∏
𝜌∈𝒦𝑓(𝑟)

(𝑧 − 𝜌)𝑚𝑓(𝜌)
.

Thus, substituting this into Definition 4.3.6,

|𝐵𝑓(𝑧)| = |𝑓(𝑧)| ∏
𝜌∈𝒦𝑓(𝑟)

∣𝑅 − 𝑧𝜌/𝑅
𝑧 − 𝜌 ∣

𝑚𝑓(𝜌)
. (4.4)

We know that |𝑓(𝑧)| ≠ 0 since 𝑧 ∉ 𝒦𝑓(𝑟). Now note that

∣𝑅 − 𝑧𝜌/𝑅
𝑧 − 𝜌 ∣ = 0 ⟹ |𝑧| = 𝑅2

|𝜌| .

However, this is a contradiction because 𝜌 ∈ 𝒦𝑓(𝑟) tells us that 𝑅 < 𝑅2/|𝜌| = |𝑧|, but
𝑧 ∈ D𝑟 tells us that |𝑧| ≤ 𝑟 < 𝑅. So, we know that

∣𝑅 − 𝑧𝜌/𝑅
𝑧 − 𝜌 ∣ ≠ 0 for all 𝜌 ∈ 𝒦𝑓(𝑟).

Applying this to Equation (4.4) we have that |𝐵𝑓(𝑧)| ≠ 0. So, 𝐵𝑓(𝑧) ≠ 0.
We have shown that 𝐵𝑓(𝑧) ≠ 0 for both 𝑧 ∈ 𝒦𝑓(𝑟) and 𝑧 ∉ 𝒦𝑓(𝑟), so the result

follows.

Theorem 4.3.5 (JBlaschkeDerivBound). Let 𝐵 > 1 and 0 < 𝑟′ < 𝑟 < 𝑅 < 1. If 𝑓 ∶ C → C
is a function analytic on neighborhoods of points in D1 with 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 for all
|𝑧| ≤ 𝑅, then for all |𝑧| ≤ 𝑟′

|𝐿′
𝑓(𝑧)| ≤

16 log(𝐵) 𝑟2
(𝑟 − 𝑟′)3
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Proof. By Lemma 4.3.11 we immediately know that |𝐵𝑓(𝑧)| ≤ 𝐵 for all |𝑧| ≤ 𝑅. Now since
𝐿𝑓 = 𝐽𝐵𝑓

by Definition 4.3.7, by Theorem 4.3.3 we know that

𝐿𝑓(0) = 0 and ℜ𝐿𝑓(𝑧) = log |𝐵𝑓(𝑧)| − log |𝐵𝑓(0)| ≤ log |𝐵𝑓(𝑧)| ≤ log𝐵

for all |𝑧| ≤ 𝑟. So by Theorem 4.3.2, it follows that

|𝐿′
𝑓(𝑧)| ≤

16 log(𝐵) 𝑟2
(𝑟 − 𝑟′)3

for all |𝑧| ≤ 𝑟′.
Theorem 4.3.6 (FinalBound). Let 𝐵 > 1 and 0 < 𝑟′ < 𝑟 < 𝑅′ < 𝑅 < 1. If 𝑓 ∶ C → C is
a function analytic on neighborhoods of points in D1 with 𝑓(0) = 1 and |𝑓(𝑧)| ≤ 𝐵 for all
|𝑧| ≤ 𝑅, then for all 𝑧 ∈ D𝑅′ ∖𝒦𝑓(𝑅′) we have

∣ 𝑓
′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)
𝑧 − 𝜌 ∣ ≤ ( 16𝑟2

(𝑟 − 𝑟′)3 + 1
(𝑅2/𝑅′ −𝑅′) log(𝑅/𝑅′)) log𝐵.

Proof. Since 𝑧 ∈ D𝑟′ ∖𝒦𝑓(𝑅′) we know that 𝑧 ∉ 𝒦𝑓(𝑅′); thus, by Definition 4.3.5 we know
that

𝐶𝑓(𝑧) =
𝑓(𝑧)

∏
𝜌∈𝒦𝑓(𝑅′)

(𝑧 − 𝜌)𝑚𝑓(𝜌)
.

Substituting this into Definition 4.3.6 we have that

𝐵𝑓(𝑧) = 𝑓(𝑧) ∏
𝜌∈𝒦𝑓(𝑅′)

(𝑅 − 𝑧𝜌/𝑅
𝑧 − 𝜌 )

𝑚𝑓(𝜌)
.

Taking the complex logarithm of both sides we have that

Log𝐵𝑓(𝑧) = Log 𝑓(𝑧) + ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)Log(𝑅 − 𝑧𝜌/𝑅) − ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)Log(𝑧 − 𝜌).

Taking the derivative of both sides we have that

𝐵′
𝑓

𝐵𝑓
(𝑧) = 𝑓 ′

𝑓 (𝑧) + ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)
𝑧 − 𝑅2/𝜌 − ∑

𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)
𝑧 − 𝜌 .

By Definition 4.3.7 and Theorem 4.3.3 we recall that

𝐿𝑓(𝑧) = 𝐽𝐵𝑓
(𝑧) = Log𝐵𝑓(𝑧) − Log𝐵𝑓(0).

Taking the derivative of both sides we have that 𝐿′
𝑓(𝑧) = (𝐵′

𝑓/𝐵𝑓)(𝑧). Thus,

𝑓 ′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)
𝑧 − 𝜌 = 𝐿′

𝑓(𝑧) − ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)
𝑧 − 𝑅2/𝜌 .
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Now since 𝑧 ∈ D𝑅′ and 𝜌 ∈ 𝒦𝑓(𝑅′), we know that 𝑅2/𝑅′ − 𝑅′ ≤ |𝑧 − 𝑅2/𝜌|. Thus by the
triangle inequality we have

∣ 𝑓
′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)
𝑧 − 𝜌 ∣ ≤ |𝐿′

𝑓(𝑧)| + ( 1
𝑅2/𝑅′ −𝑅′) ∑

𝜌∈𝒦𝑓(𝑅′)
𝑚𝑓(𝜌).

Now by Theorem 4.3.4 and 4.3.5 we get our desired result with a little algebraic manipulation.

Theorem 4.3.7 (ZetaFixedLowerBound). For all 𝑡 ∈ R one has

|𝜁(3/2 + 𝑖𝑡)| ≥ 𝜁(3)
𝜁(3/2) .

Proof. From the Euler product expansion of 𝜁, we have that for ℜ𝑠 > 1

𝜁(𝑠) = ∏
𝑝

1
1 − 𝑝−𝑠 .

Thus, we have that
𝜁(2𝑠)
𝜁(𝑠) = ∏

𝑝

1 − 𝑝−𝑠

1 − 𝑝−2𝑠 = ∏
𝑝

1
1 + 𝑝−𝑠 .

Now note that |1 − 𝑝−(3/2+𝑖𝑡)| ≤ 1 + |𝑝−(3/2+𝑖𝑡)| = 1 + 𝑝−3/2. Thus,

|𝜁(3/2 + 𝑖𝑡)| = ∏
𝑝

1
|1 − 𝑝−(3/2+𝑖𝑡)| ≥ ∏

𝑝

1
1 + 𝑝−3/2 = 𝜁(3)

𝜁(3/2)

for all 𝑡 ∈ R as desired.

Lemma 4.3.13 (ZetaAltFormula). Let

𝜁0(𝑠) = 1 + 1
𝑠 − 1 − 𝑠∫

∞

1
{𝑥} 𝑥−𝑠 𝑑𝑥

𝑥 .

We have that 𝜁(𝑠) = 𝜁0(𝑠) for 𝜎 > 1.
Proof. Note that for 𝜎 > 1 we have

𝜁(𝑠) =
∞
∑
𝑛=1

1
𝑛𝑠 =

∞
∑
𝑛=1

𝑛
𝑛𝑠 −

∞
∑
𝑛=1

𝑛 − 1
𝑛𝑠 =

∞
∑
𝑛=1

𝑛
𝑛𝑠 −

∞
∑
𝑛=0

𝑛
(𝑛 + 1)𝑠 =

∞
∑
𝑛=1

𝑛
𝑛𝑠 −

∞
∑
𝑛=1

𝑛
(𝑛 + 1)𝑠 .

Thus
𝜁(𝑠) =

∞
∑
𝑛=1

𝑛 (𝑛−𝑠 − (𝑛 + 1)−𝑠).

Now we note that

𝑠∫
𝑛+1

𝑛
𝑥−𝑠 𝑑𝑥

𝑥 = 𝑠(−1
𝑠 𝑥−𝑠)

𝑛+1

𝑛
= 𝑛−𝑠 − (𝑛 + 1)−𝑠.

46



So, substituting this we have

𝜁(𝑠) =
∞
∑
𝑛=1

𝑛 (𝑛−𝑠 − (𝑛 + 1)−𝑠) = 𝑠
∞
∑
𝑛=1

𝑛∫
𝑛+1

𝑛
𝑥−𝑠 𝑑𝑥

𝑥 = 𝑠∫
∞

1
⌊𝑥⌋ 𝑥−𝑠 𝑑𝑥

𝑥 .

But noting that ⌊𝑥⌋ = 𝑥 − {𝑥} we have that

𝜁(𝑠) = 𝑠∫
∞

1
⌊𝑥⌋ 𝑥−𝑠 𝑑𝑥

𝑥 = 𝑠∫
∞

1
𝑥−𝑠 𝑑𝑥 − 𝑠∫

∞

1
{𝑥} 𝑥−𝑠 𝑑𝑥

𝑥 .

Evaluating the first integral completes the result.

Lemma 4.3.14 (ZetaAltFormulaAnalytic). We have that 𝜁0(𝑠) is analytic for all 𝑠 ∈ 𝑆
where 𝑆 = {𝑠 ∈ C ∶ ℜ𝑠 > 0, 𝑠 ≠ 1}.
Proof. Note that we have

∣∫
∞

1
{𝑥} 𝑥−𝑠 𝑑𝑥

𝑥 ∣ ≤ ∫
∞

1
|{𝑥} 𝑥−𝑠−1| 𝑑𝑥 ≤ ∫

∞

1
𝑥−𝜎−1 𝑑𝑥 = 1

𝜎 .

So this integral converges uniformly on compact subsets of 𝑆, which tells us that it is analytic
on 𝑆. So it immediately follows that 𝜁0(𝑠) is analytic on 𝑆 as well, since 𝑆 avoids the pole
at 𝑠 = 1 coming from the (𝑠 − 1)−1 term.

Lemma 4.3.15 (ZetaExtend). We have that

𝜁(𝑠) = 1 + 1
𝑠 − 1 − 𝑠∫

∞

1
{𝑥} 𝑥−𝑠 𝑑𝑥

𝑥

for all 𝑠 ∈ 𝑆.
Proof. This is an immediate consequence of the identity theorem.

Theorem 4.3.8 (GlobalBound). For all 𝑠 ∈ C with |𝑠| ≤ 1 and 𝑡 ∈ R with |𝑡| ≥ 2, we have
that

|𝜁(𝑠 + 3/2 + 𝑖𝑡)| ≤ 7 + 2 |𝑡|.
Proof. For the sake of clearer proof writing let 𝑧 = 𝑠+ 3/2 + 𝑖𝑡. Since |𝑠| ≤ 1 we know that
1/2 ≤ ℜ𝑧; additionally, as |𝑡| ≥ 2, we know 1 ≤ |ℑ𝑧|. So, 𝑧 ∈ 𝑆. Thus, from Lemma 4.3.15
we know that

|𝜁(𝑧)| ≤ 1 + 1
|𝑧 − 1| + |𝑧| ⋅ ∣∫

∞

1
{𝑥} 𝑥−𝑧 𝑑𝑥

𝑥 ∣

by applying the triangle inequality. Now note that |𝑧 − 1| ≥ 1. Likewise,

|𝑧| ⋅ ∣∫
∞

1
{𝑥} 𝑥−𝑧 𝑑𝑥

𝑥 ∣ ≤ |𝑧|∫
∞

1
|{𝑥} 𝑥−𝑧−1| 𝑑𝑥 ≤ |𝑧|∫

∞

1
𝑥−ℜ𝑧−1 𝑑𝑥 = |𝑧|

ℜ𝑧 ≤ 2 |𝑧|.

Thus we have that,

|𝜁(𝑠+ 3/2+ 𝑖𝑡)| = |𝜁(𝑧)| ≤ 1+1+2 |𝑧| = 2+2 |𝑠+ 3/2+ 𝑖𝑡| ≤ 2+2 |𝑠|+ 3+2 |𝑖𝑡| ≤ 7+2 |𝑡|.
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Theorem 4.3.9 (LogDerivZetaFinalBound). Let 𝑡 ∈ R with |𝑡| ≥ 2 and 0 < 𝑟′ < 𝑟 < 𝑅′ <
𝑅 < 1. If 𝑓(𝑧) = 𝜁(𝑧 + 3/2 + 𝑖𝑡), then for all 𝑧 ∈ D′

𝑅 ∖𝒦𝑓(𝑅′) we have that

∣ 𝑓
′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)
𝑧 − 𝜌 ∣ ≪ ( 16𝑟2

(𝑟 − 𝑟′)3 + 1
(𝑅2/𝑅′ −𝑅′) log(𝑅/𝑅′)) log |𝑡|.

Proof. Let 𝑔(𝑧) = 𝜁(𝑧 + 3/2 + 𝑖𝑡)/𝜁(3/2 + 𝑖𝑡). Note that 𝑔(0) = 1 and for |𝑧| ≤ 𝑅

|𝑔(𝑧)| = |𝜁(𝑧 + 3/2 + 𝑖𝑡)|
|𝜁(3/2 + 𝑖𝑡)| ≤ 𝜁(3/2)

𝜁(3) ⋅ (7 + 2 |𝑡|) ≤ 13 𝜁(3/2)
3 𝜁(3) |𝑡|

by Theorems 4.3.7 and 4.3.8. Thus by Theorem 4.3.6 we have that

∣ 𝑔
′

𝑔 (𝑧) − ∑
𝜌∈𝒦𝑔(𝑅′)

𝑚𝑔(𝜌)
𝑧 − 𝜌 ∣ ≤ ( 16𝑟2

(𝑟 − 𝑟′)3 + 1
(𝑅2/𝑅′ −𝑅′) log(𝑅/𝑅′))(log |𝑡| + log(13 𝜁(3/2)

3 𝜁(3) )) .

Now note that 𝑓 ′/𝑓 = 𝑔′/𝑔, 𝒦𝑓(𝑅′) = 𝒦𝑔(𝑅′), and 𝑚𝑔(𝜌) = 𝑚𝑓(𝜌) for all 𝜌 ∈ 𝒦𝑓(𝑅′).
Thus we have that,

∣ 𝑓
′

𝑓 (𝑧) − ∑
𝜌∈𝒦𝑓(𝑅′)

𝑚𝑓(𝜌)
𝑧 − 𝜌 ∣ ≪ ( 16𝑟2

(𝑟 − 𝑟′)3 + 1
(𝑅2/𝑅′ −𝑅′) log(𝑅/𝑅′)) log |𝑡|

where the implied constant 𝐶 is taken to be

𝐶 ≥ 1 + log((13 𝜁(3/2))/(3 𝜁(3)))
log 2 .

Definition 4.3.8 (ZeroWindows). Let 𝒵𝑡 = {𝜌 ∈ C ∶ 𝜁(𝜌) = 0, |𝜌 − (3/2 + 𝑖𝑡)| ≤ 5/6}.
Lemma 4.3.16 (SumBoundI). For all 𝛿 ∈ (0, 1) and 𝑡 ∈ R with |𝑡| ≥ 2 we have

∣ 𝜁
′

𝜁 (1 + 𝛿 + 𝑖𝑡) − ∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌)
1 + 𝛿 + 𝑖𝑡 − 𝜌 ∣ ≪ log |𝑡|.

Proof. We apply Theorem 4.3.9 where 𝑟′ = 2/3, 𝑟 = 3/4, 𝑅′ = 5/6, and 𝑅 = 8/9. Thus, for
all 𝑧 ∈ D5/6 ∖𝒦𝑓(5/6) we have that

∣ 𝜁
′

𝜁 (𝑧 + 3/2 + 𝑖𝑡) − ∑
𝜌∈𝒦𝑓(5/6)

𝑚𝑓(𝜌)
𝑧 − 𝜌 ∣ ≪ log |𝑡|

where 𝑓(𝑧) = 𝜁(𝑧 + 3/2 + 𝑖𝑡) for 𝑡 ∈ R with |𝑡| ≥ 3. Now if we let 𝑧 = −1/2 + 𝛿, then
𝑧 ∈ (−1/2, 1/2) ⊆ D5/6. Additionally, 𝑓(𝑧) = 𝜁(1 + 𝛿 + 𝑖𝑡), where 1 + 𝛿 + 𝑖𝑡 lies in the
zero-free region where 𝜎 > 1. Thus, 𝑧 ∉ 𝒦𝑓(5/6). So,

∣ 𝜁
′

𝜁 (1 + 𝛿 + 𝑖𝑡) − ∑
𝜌∈𝒦𝑓(5/6)

𝑚𝑓(𝜌)
−1/2 + 𝛿 − 𝜌 ∣ ≪ log |𝑡|.
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But now note that if 𝜌 ∈ 𝒦𝑓(5/6), then 𝜁(𝜌+3/2+𝑖𝑡) = 0 and |𝜌| ≤ 5/6. Thus, 𝜌+3/2+𝑖𝑡 ∈
𝒵𝑡. Additionally, note that 𝑚𝑓(𝜌) = 𝑚𝜁(𝜌 + 3/2 + 𝑖𝑡). So changing variables using these
facts gives us that

∣ 𝜁
′

𝜁 (1 + 𝛿 + 𝑖𝑡) − ∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌)
1 + 𝛿 + 𝑖𝑡 − 𝜌 ∣ ≪ log |𝑡|.

Lemma 4.3.17 (ShiftTwoBound). For all 𝛿 ∈ (0, 1) and 𝑡 ∈ R with |𝑡| ≥ 2 we have

−ℜ(𝜁′
𝜁 (1 + 𝛿 + 2𝑖𝑡)) ≪ log |𝑡|.

Proof. Note that, for 𝜌 ∈ 𝒵2𝑡

ℜ( 1
1 + 𝛿 + 2𝑖𝑡 − 𝜌) = ℜ( 1 + 𝛿 − 2𝑖𝑡 − 𝜌

(1 + 𝛿 + 2𝑖𝑡 − 𝜌)(1 + 𝛿 − 2𝑖𝑡 − 𝜌))

= ℜ(1 + 𝛿 − 2𝑖𝑡 − 𝜌)
|1 + 𝛿 + 2𝑖𝑡 − 𝜌|2 = 1 + 𝛿 −ℜ𝜌

(1 + 𝛿 −ℜ𝜌)2 + (2𝑡 − ℑ𝜌)2 .

Now since 𝜌 ∈ 𝒵2𝑡, we have that |𝜌 − (3/2 + 2𝑖𝑡)| ≤ 5/6. So, we have ℜ𝜌 ∈ (2/3, 7/3) and
ℑ𝜌 ∈ (2𝑡 − 5/6, 2𝑡 + 5/6). Thus, we have that

1/3 < 1 + 𝛿 −ℜ𝜌 and (1 + 𝛿 − ℜ𝜌)2 + (2𝑡 − ℑ𝜌)2 < 16/9 + 25/36 = 89/36.

Which implies that

0 ≤ 12
89 < 1 + 𝛿 −ℜ𝜌

(1 + 𝛿 −ℜ𝜌)2 + (2𝑡 − ℑ𝜌)2 = ℜ( 1
1 + 𝛿 + 2𝑖𝑡 − 𝜌) . (4.5)

Note that, from Lemma 4.3.16, we have

∑
𝜌∈𝒵2𝑡

𝑚𝜁(𝜌)ℜ( 1
1 + 𝛿 + 2𝑖𝑡 − 𝜌)−ℜ(𝜁′

𝜁 (1 + 𝛿 + 2𝑖𝑡)) ≤ ∣𝜁
′

𝜁 (1 + 𝛿 + 2𝑖𝑡) − ∑
𝜌∈𝒵2𝑡

𝑚𝜁(𝜌)
1 + 𝛿 + 2𝑖𝑡 − 𝜌 ∣ ≪ log |2𝑡|.

Since 𝑚𝜁(𝜌) ≥ 0 for all 𝜌 ∈ 𝒵2𝑡, the inequality from Equation (4.5) tells us that by sub-
tracting the sum from both sides we have

−ℜ(𝜁′
𝜁 (1 + 𝛿 + 2𝑖𝑡)) ≪ log |2𝑡|.

Noting that log |2𝑡| = log(2) + log |𝑡| ≤ 2 log |𝑡| completes the proof.

Lemma 4.3.18 (ShiftOneBound). There exists 𝐶 > 0 such that for all 𝛿 ∈ (0, 1) and 𝑡 ∈ R
with |𝑡| ≥ 3; if 𝜁(𝜌) = 0 with 𝜌 = 𝜎 + 𝑖𝑡, then

−ℜ(𝜁′
𝜁 (1 + 𝛿 + 𝑖𝑡)) ≤ − 1

1 + 𝛿 − 𝜎 + 𝐶 log |𝑡|.
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Proof. Note that for 𝜌′ ∈ 𝒵𝑡

ℜ( 1
1 + 𝛿 + 𝑖𝑡 − 𝜌′) = ℜ( 1 + 𝛿 − 𝑖𝑡 − 𝜌′

(1 + 𝛿 + 𝑖𝑡 − 𝜌′)(1 + 𝛿 − 𝑖𝑡 − 𝜌′))

= ℜ(1 + 𝛿 − 𝑖𝑡 − 𝜌′)
|1 + 𝛿 + 𝑖𝑡 − 𝜌′|2 = 1 + 𝛿 −ℜ𝜌′

(1 + 𝛿 −ℜ𝜌′)2 + (𝑡 − ℑ𝜌′)2 .

Now since 𝜌′ ∈ 𝒵𝑡, we have that |𝜌 − (3/2 + 𝑖𝑡)| ≤ 5/6. So, we have ℜ𝜌′ ∈ (2/3, 7/3) and
ℑ𝜌′ ∈ (𝑡 − 5/6, 𝑡 + 5/6). Thus we have that

1/3 < 1 + 𝛿 −ℜ𝜌′ and (1 + 𝛿 −ℜ𝜌′)2 + (𝑡 − ℑ𝜌′)2 < 16/9 + 25/36 = 89/36.

Which implies that

0 ≤ 12
89 < 1 + 𝛿 −ℜ𝜌′

(1 + 𝛿 −ℜ𝜌′)2 + (𝑡 − ℑ𝜌′)2 = ℜ( 1
1 + 𝛿 + 𝑖𝑡 − 𝜌′) . (4.6)

Note that, from Lemma 4.3.16, we have

∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌)ℜ( 1
1 + 𝛿 + 𝑖𝑡 − 𝜌)−ℜ(𝜁′

𝜁 (1 + 𝛿 + 𝑖𝑡)) ≤ ∣𝜁
′

𝜁 (1 + 𝛿 + 𝑖𝑡) − ∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌)
1 + 𝛿 + 𝑖𝑡 − 𝜌 ∣ ≪ log |𝑡|.

Since 𝑚𝜁(𝜌) ≥ 0 for all 𝜌′ ∈ 𝒵𝑡, the inequality from Equation (4.6) tells us that by subtract-
ing the sum over all 𝜌′ ∈ 𝒵𝑡 ∖ {𝜌} from both sides we have

𝑚𝜁(𝜌)
ℜ(1 + 𝛿 + 𝑖𝑡 − 𝜌) − ℜ(𝜁′

𝜁 (1 + 𝛿 + 𝑖𝑡)) ≪ log |𝑡|.

But of course we have that ℜ(1 + 𝛿 + 𝑖𝑡 − 𝜌) = 1 + 𝛿 − 𝜎. So subtracting this term from
both sides and recalling the implied constant we have

−ℜ(𝜁′
𝜁 (1 + 𝛿 + 𝑖𝑡)) ≤ − 𝑚𝜁(𝜌)

1 + 𝛿 − 𝜎 + 𝐶 log |𝑡|.

We have that 𝜎 ≤ 1 since 𝜁 is zero free on the right half plane 𝜎 > 1. Thus 0 < 1 + 𝛿 − 𝜎.
Noting this in combination with the fact that 1 ≤ 𝑚𝜁(𝜌) completes the proof.

Lemma 4.3.19 (ShiftZeroBound). For all 𝛿 ∈ (0, 1) we have

−ℜ(𝜁′
𝜁 (1 + 𝛿)) ≤ 1

𝛿 + 𝑂(1).

Proof. From Theorem 3.4.14 we know that

−𝜁′
𝜁 (𝑠) = 1

𝑠 − 1 + 𝑂(1).

Changing variables 𝑠 ↦ 1 + 𝛿 and applying the triangle inequality we have that

−ℜ(𝜁′
𝜁 (1 + 𝛿)) ≤ ∣−𝜁′

𝜁 (1 + 𝛿)∣ ≤ 1
𝛿 + 𝑂(1).
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Lemma 4.3.20 (ThreeFourOneTrigIdentity). We have that

0 ≤ 3 + 4 cos 𝜃 + cos 2𝜃
for all 𝜃 ∈ R.

Proof. We know that cos(2𝜃) = 2 cos2 𝜃 − 1, thus
3 + 4 cos 𝜃 + cos 2𝜃 = 2 + 4 cos 𝜃 + 2 cos2 𝜃 = 2 (1 + cos 𝜃)2.

Noting that 0 ≤ 1 + cos 𝜃 completes the proof.

Theorem 4.3.10 (ZeroInequality). There exists a constant 0 < 𝐸 < 1 such that for all
𝜌 = 𝜎 + 𝑖𝑡 with 𝜁(𝜌) = 0 and |𝑡| ≥ 2, one has

𝜎 ≤ 1 − 𝐸
log |𝑡| .

Proof. From Theorem 3.5.1 when ℜ𝑠 > 1 we have

−𝜁′
𝜁 (𝑠) = ∑

1≤𝑛

Λ(𝑛)
𝑛𝑠 .

Thus,

−3 𝜁′
𝜁 (1 + 𝛿) − 4 𝜁′

𝜁 (1 + 𝛿 + 𝑖𝑡) − 𝜁′
𝜁 (1 + 𝛿 + 2𝑖𝑡) = ∑

1≤𝑛
Λ(𝑛) 𝑛−(1+𝛿) (3 + 4𝑛−𝑖𝑡 + 𝑛−2𝑖𝑡) .

Now applying Euler’s identity

−3ℜ(𝜁′
𝜁 (1 + 𝛿)) − 4ℜ(𝜁′

𝜁 (1 + 𝛿 + 𝑖𝑡)) −ℜ(𝜁′
𝜁 (1 + 𝛿 + 2𝑖𝑡))

= ∑
1≤𝑛

Λ(𝑛) 𝑛−(1+𝛿) (3 + 4 cos(−𝑖𝑡 log𝑛) + cos(−2𝑖𝑡 log𝑛))

By Lemma 4.3.20 we know that the series on the right hand side is bounded below by 0, and
by Lemmas 4.3.17, 4.3.18, and 4.3.19 we have an upper bound on the left hand side. So,

0 ≤ 3
𝛿 + 3𝐴 − 4

1 + 𝛿 − 𝜎 + 4𝐵 log |𝑡| + 𝐶 log |𝑡|

where 𝐴, 𝐵, and 𝐶 are the implied constants coming from Lemmas 4.3.19, 4.3.18, and 4.3.17
respectively. By choosing 𝐷 ≥ 3𝐴/ log 2 + 4𝐵 + 𝐶 we have

4
1 + 𝛿 − 𝜎 ≤ 3

𝛿 + 𝐷 log |𝑡|

by some manipulation. Now if we choose 𝛿 = (2𝐷 log |𝑡|)−1 then we have

4
1 − 𝜎 + 1/(2𝐷 log |𝑡|) ≤ 7𝐷 log |𝑡|.

So with some manipulation we have that

𝜎 ≤ 1 − 1
14𝐷 log |𝑡| .

This is exactly the desired result with the constant 𝐸 = (14𝐷)−1
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Definition 4.3.9 (DeltaT). Let 𝛿𝑡 = 𝐸/ log |𝑡| where 𝐸 is the constant coming from Theo-
rem 4.3.10.
Lemma 4.3.21 (DeltaRange). For all 𝑡 ∈ R with |𝑡| ≥ 2 we have that

𝛿𝑡 < 1/14.
Proof. Note that 𝛿𝑡 = 𝐸/ log |𝑡| where 𝐸 is the implied constant from Lemma 4.3.10. But
we know that 𝐸 = (14𝐷)−1 where 𝐷 ≥ 3𝐴/ log 2 + 4𝐵 + 𝐶 where 𝐴, 𝐵, and 𝐶 are the
constants coming from Lemmas 4.3.19, 4.3.18, and 4.3.17 respectively. Thus,

𝐸 ≤ 1
14 (3𝐴/ log 2 + 4𝐵 + 𝐶).

But note that 𝐴 ≥ 0 and 𝐵 ≥ 0 by Lemmas 4.3.19 and 4.3.18 respectively. However, we
have that

𝐶 ≥ 2 + 2 log((13 𝜁(3/2))/(3 𝜁(3)))
log 2

by Theorem 4.3.9 with Lemmas 4.3.16 and 4.3.17. So, by a very lazy estimate we have 𝐶 ≥ 2
and 𝐸 ≤ 1/28. Thus,

𝛿𝑡 =
𝐸

log |𝑡| ≤
1

28 log 2 < 1
14 .

Lemma 4.3.22 (SumBoundII). For all 𝑡 ∈ R with |𝑡| ≥ 2 and 𝑧 = 𝜎 + 𝑖𝑡 where 1 − 𝛿𝑡/3 ≤
𝜎 ≤ 3/2, we have that

∣ 𝜁
′

𝜁 (𝑧) − ∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌)
𝑧 − 𝜌 ∣ ≪ log |𝑡|.

Proof. By Lemma 4.3.21 we have that

−11/21 < −1/2 − 𝛿𝑡/3 ≤ 𝜎 − 3/2 ≤ 0.
We apply Theorem 4.3.9 where 𝑟′ = 2/3, 𝑟 = 3/4, 𝑅′ = 5/6, and 𝑅 = 8/9. Thus for all
𝑧 ∈ D5/6 ∖𝒦𝑓(5/6) we have that

∣ 𝜁
′

𝜁 (𝑧 + 3/2 + 𝑖𝑡) − ∑
𝜌∈𝒦𝑓(5/6)

𝑚𝑓(𝜌)
𝑧 − 𝜌 ∣ ≪ log |𝑡|

where 𝑓(𝑧) = 𝜁(𝑧 + 3/2 + 𝑖𝑡) for 𝑡 ∈ R with |𝑡| ≥ 3. Now if we let 𝑧 = 𝜎 − 3/2, then
𝑧 ∈ (−11/21, 0) ⊆ D5/6. Additionally, 𝑓(𝑧) = 𝜁(𝜎 + 𝑖𝑡), where 𝜎 + 𝑖𝑡 lies in the zero free
region given by Lemma 4.3.10 since 𝜎 ≥ 1 − 𝛿𝑡/3 ≥ 1 − 𝛿𝑡. Thus, 𝑧 ∉ 𝒦𝑓(5/6). So,

∣ 𝜁
′

𝜁 (𝜎 + 𝑖𝑡) − ∑
𝜌∈𝒦𝑓(5/6)

𝑚𝑓(𝜌)
𝜎 − 3/2 − 𝜌 ∣ ≪ log |𝑡|.

But now note that if 𝜌 ∈ 𝒦𝑓(5/6), then 𝜁(𝜌 + 3/2 + 𝑖𝑡) = 0 and |𝜌| ≤ 5/6. Additionally,
note that 𝑚𝑓(𝜌) = 𝑚𝜁(𝜌 + 3/2 + 𝑖𝑡). So changing variables using these facts gives us that

∣ 𝜁
′

𝜁 (𝜎 + 𝑖𝑡) − ∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌)
𝜎 + 𝑖𝑡 − 𝜌 ∣ ≪ log |𝑡|.
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Lemma 4.3.23 (GapSize). Let 𝑡 ∈ R with |𝑡| ≥ 3 and 𝑧 = 𝜎+ 𝑖𝑡 where 1−𝛿𝑡/3 ≤ 𝜎 ≤ 3/2.
Additionally, let 𝜌 ∈ 𝒵𝑡. Then we have that

|𝑧 − 𝜌| ≥ 𝛿𝑡/6.

Proof. Let 𝜌 = 𝜎′ + 𝑖𝑡′ and note that since 𝜌 ∈ 𝒵𝑡, we have 𝑡′ ∈ (𝑡 − 5/6, 𝑡 + 5/6). Thus, if
𝑡 > 1 we have

log |𝑡′| ≤ log |𝑡 + 5/6| ≤ log |2𝑡| = log 2 + log |𝑡| ≤ 2 log |𝑡|.

And otherwise if 𝑡 < −1 we have

log |𝑡′| ≤ log |𝑡 − 5/6| ≤ log |2𝑡| = log 2 + log |𝑡| ≤ 2 log |𝑡|.

So by taking reciprocals and multiplying through by a constant we have that 𝛿𝑡 ≤ 2𝛿𝑡′ . Now
note that since 𝜌 ∈ 𝒵𝑡 we know that 𝜎′ ≤ 1 − 𝛿𝑡′ by Theorem 4.3.10 (here we use the fact
that |𝑡| ≥ 3 to give us that |𝑡′| ≥ 2). Thus,

𝛿𝑡/6 ≤ 𝛿𝑡′ − 𝛿𝑡/3 = 1 − 𝛿𝑡/3 − (1 − 𝛿𝑡′) ≤ 𝜎 − 𝜎′ ≤ |𝑧 − 𝜌|.

Lemma 4.3.24 (LogDerivZetaUniformLogSquaredBoundStrip). There exists a constant
𝐹 ∈ (0, 1/2) such that for all 𝑡 ∈ R with |𝑡| ≥ 3 one has

1 − 𝐹
log |𝑡| ≤ 𝜎 ≤ 3/2 ⟹ ∣𝜁

′

𝜁 (𝜎 + 𝑖𝑡)∣ ≪ log2 |𝑡|

where the implied constant is uniform in 𝜎.
Proof. Take 𝐹 = 𝐸/3 where 𝐸 comes from Theorem 4.3.10. Then we have that 𝜎 ≥ 1−𝛿𝑡/3.
So, we apply Lemma 4.3.22, which gives us that

∣ 𝜁
′

𝜁 (𝑧) − ∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌)
𝑧 − 𝜌 ∣ ≪ log |𝑡|.

Using the reverse triangle inequality and rearranging, we have that

∣ 𝜁
′

𝜁 (𝑧)∣ ≤ ∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌)
|𝑧 − 𝜌| + 𝐶 log |𝑡|

where 𝐶 is the implied constant in Lemma 4.3.22. Now applying Lemma 4.3.23 we have
that

∣ 𝜁
′

𝜁 (𝑧)∣ ≤ 6
𝛿𝑡

∑
𝜌∈𝒵𝑡

𝑚𝜁(𝜌) + 𝐶 log |𝑡|.

Now let 𝑓(𝑧) = 𝜁(𝑧 + 3/2 + 𝑖𝑡)/𝜁(3/2 + 𝑖𝑡) with 𝜌 = 𝜌′ + 3/2 + 𝑖𝑡. Then if 𝜌 ∈ 𝒵𝑡 we have
that

0 = 𝜁(𝜌) = 𝜁(𝜌′ + 3/2 + 𝑖𝑡) = 𝑓(𝜌′)
with the same multiplicity of zero, that is 𝑚𝜁(𝜌) = 𝑚𝑓(𝜌′). And also if 𝜌 ∈ 𝒵𝑡 then

5/6 ≥ |𝜌 − (3/2 + 𝑖𝑡)| = |𝜌′|.
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Thus we change variables to have that

∣ 𝜁
′

𝜁 (𝑧)∣ ≤ 6
𝛿𝑡

∑
𝜌′∈𝒦𝑓(5/6)

𝑚𝑓(𝜌′) + 𝐶 log |𝑡|.

Now note that 𝑓(0) = 1 and for |𝑧| ≤ 8/9 we have

|𝑓(𝑧)| = |𝜁(𝑧 + 3/2 + 𝑖𝑡)|
|𝜁(3/2 + 𝑖𝑡)| ≤ 𝜁(3/2)

𝜁(3) ⋅ (7 + 2 |𝑡|) ≤ 13 𝜁(3/2)
3 𝜁(3) |𝑡|

by Theorems 4.3.7 and 4.3.8. Thus by Theorem 4.3.4 we have that

∑
𝜌′∈𝒦𝑓(5/6)

𝑚𝑓(𝜌′) ≤
log |𝑡| + log(13 𝜁(3/2)/(3 𝜁(3)))

log((8/9)/(5/6)) ≤ 𝐷 log |𝑡|

where 𝐷 is taken to be sufficiently large. Recall, by definition that, 𝛿𝑡 = 𝐸/ log |𝑡| with 𝐸
coming from Theorem 4.3.10. By using this fact and the above, we have that

∣ 𝜁
′

𝜁 (𝑧)∣ ≪ log2 |𝑡| + log |𝑡|

where the implied constant is taken to be bigger than max(6𝐷/𝐸,𝐶). We know that the
RHS is bounded above by ≪ log2 |𝑡|; so the result follows.

Theorem 4.3.11 (LogDerivZetaUniformLogSquaredBound). There exists a constant 𝐹 ∈
(0, 1/2) such that for all 𝑡 ∈ R with |𝑡| ≥ 3 one has

1 − 𝐹
log |𝑡| ≤ 𝜎 ⟹ ∣𝜁

′

𝜁 (𝜎 + 𝑖𝑡)∣ ≪ log2 |𝑡|

where the implied constant is uniform in 𝜎.
Proof. Note that

∣ 𝜁
′

𝜁 (𝜎 + 𝑖𝑡)∣ = ∑
1≤𝑛

Λ(𝑛)
|𝑛𝜎+𝑖𝑡| = ∑

1≤𝑛

Λ(𝑛)
𝑛𝜎 = −𝜁′

𝜁 (𝜎) ≤ ∣𝜁
′

𝜁 (𝜎)∣ .

From Theorem 3.4.14, and applying the triangle inequality we know that

∣ 𝜁
′

𝜁 (𝑠)∣ ≤ 1
|𝑠 − 1| + 𝐶.

where 𝐶 > 0 is some constant. Thus, for 𝜎 ≥ 3/2 we have that

∣ 𝜁
′

𝜁 (𝜎 + 𝑖𝑡)∣ ≤ ∣𝜁
′

𝜁 (𝜎)∣ ≤ 1
𝜎 − 1 + 𝐶 ≤ 2 + 𝐶 ≪ 1 ≪ log2 |𝑡|.

Putting this together with Lemma 4.3.24 completes the proof.

Theorem 4.3.12 (LogDerivZetaLogSquaredBoundSmallt). For 𝑇 > 0 and 𝜎′ = 1−𝛿𝑇 /3 =
1 − 𝐹/ log𝑇 , if |𝑡| ≤ 𝑇 then we have that

∣ 𝜁
′

𝜁 (𝜎′ + 𝑖𝑡)∣ ≪ log2(2 + 𝑇 ).
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Proof. Note that if |𝑡| ≥ 3 then from Theorem 4.3.11 we have that

∣ 𝜁
′

𝜁 (𝜎′ + 𝑖𝑡)∣ ≪ log2 |𝑡| ≤ log2 𝑇 ≤ log2(2 + 𝑇 ).

Otherwise, if |𝑡| ≤ 3, then from Theorem 3.4.14 and applying the triangle inequality we
know

∣ 𝜁
′

𝜁 (𝜎′ + 𝑖𝑡)∣ ≤ 1
|(𝜎′ − 1) + 𝑖𝑡| + 𝐶 ≤ log𝑇

𝐹 + 𝐶

where 𝐶 ≥ 0. Thus, we have that

∣ 𝜁
′

𝜁 (𝜎′ + 𝑖𝑡)∣ ≤ ( log𝑇
𝐹 log 2 + 𝐶

log 2) log(2+|𝑡|) ≤ ( log(2 + 𝑇 )
𝐹 log 2 + 𝐶

log 2) log(2+𝑇) ≪ log2(2+𝑇 ).

From here out we closely follow our previous proof of the Medium PNT and we modify
it using our new estimate in Theorem 4.3.11. Recall Definition 3.5.2; for fixed 𝜀 > 0 and a
bump function 𝜈 supported on [1/2, 2] we have

𝜓𝜀(𝑋) = 1
2𝜋𝑖 ∫(𝜎)

(−𝜁′
𝜁 (𝑠)) ℳ( ̃1𝜀)(𝑠)𝑋𝑠 𝑑𝑠

where 𝜎 = 1 + 1/ log𝑋. Let 𝑇 > 3 be a large constant to be chosen later, and we take
𝜎′ = 1−𝛿𝑇 /3 = 1−𝐹/ log𝑇 with 𝐹 coming from Theorem 4.3.11. We integrate along the 𝜎
vertical line, and we pull contours accumulating the pole at 𝑠 = 1 when we integrate along
the curves

• 𝐼1: 𝜎 − 𝑖∞ to 𝜎 − 𝑖𝑇
• 𝐼2: 𝜎′ − 𝑖𝑇 to 𝜎 − 𝑖𝑇
• 𝐼3: 𝜎′ − 𝑖𝑇 to 𝜎′ + 𝑖𝑇
• 𝐼4: 𝜎′ + 𝑖𝑇 to 𝜎 + 𝑖𝑇
• 𝐼5: 𝜎 + 𝑖𝑇 to 𝜎 + 𝑖∞.

Definition 4.3.10 (I1New). Let

𝐼1(𝜈, 𝜀,𝑋, 𝑇 ) = 1
2𝜋𝑖 ∫

−𝑇

−∞
(−𝜁′

𝜁 (𝜎 + 𝑖𝑡)) ℳ( ̃1𝜀)(𝜎 + 𝑖𝑡)𝑋𝜎+𝑖𝑡 𝑑𝑡.

Definition 4.3.11 (I5New). Let

𝐼5(𝜈, 𝜀,𝑋, 𝑇 ) = 1
2𝜋𝑖 ∫

∞

𝑇
(−𝜁′

𝜁 (𝜎 + 𝑖𝑡)) ℳ( ̃1𝜀)(𝜎 + 𝑖𝑡)𝑋𝜎+𝑖𝑡 𝑑𝑡.

Lemma 4.3.25 (I1NewBound). We have that

|𝐼1(𝜈, 𝜀,𝑋, 𝑇 )| ≪ 𝑋
𝜀
√
𝑇
.
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Proof. Note that |𝐼1(𝜈, 𝜀,𝑋, 𝑇 )| =

∣ 1
2𝜋𝑖 ∫

−𝑇

−∞
(−𝜁′

𝜁 (𝜎 + 𝑖𝑡)) ℳ( ̃1𝜀)(𝜎 + 𝑖𝑡)𝑋𝜎+𝑖𝑡 𝑑𝑡∣ ≪ ∫
−𝑇

−∞
∣ 𝜁

′

𝜁 (𝜎 + 𝑖𝑡)∣⋅|ℳ( ̃1𝜀)(𝜎+𝑖𝑡)|⋅𝑋𝜎 𝑑𝑡.

Applying Theorem 4.3.11 and Lemma 3.3.10, we have that

|𝐼1(𝜈, 𝜀,𝑋, 𝑇 )| ≪ ∫
−𝑇

−∞
log2 |𝑡| ⋅ 𝑋𝜎

𝜀 |𝜎 + 𝑖𝑡|2 𝑑𝑡 ≪ 𝑋
𝜀 ∫

∞

𝑇

√
𝑡𝑑𝑡
𝑡2 ≪ 𝑋

𝜀
√
𝑇
.

Here we are using the fact that log2 𝑡 grows slower than
√
𝑡, |𝜎 + 𝑖𝑡|2 ≥ 𝑡2, and 𝑋𝜎 =

𝑋 ⋅ 𝑋1/ log𝑋 = 𝑒𝑋.

Lemma 4.3.26 (I5NewBound). We have that

|𝐼5(𝜈, 𝜀,𝑋, 𝑇 )| ≪ 𝑋
𝜀
√
𝑇
.

Proof. By symmetry, note that

|𝐼1(𝜈, 𝜀,𝑋, 𝑇 )| = |𝐼5(𝜈, 𝜀,𝑋, 𝑇 )| = |𝐼5(𝜈, 𝜀,𝑋, 𝑇 )|.
Applying Lemma 4.3.25 completes the proof.

Definition 4.3.12 (I2New). Let

𝐼2(𝜈, 𝜀,𝑋, 𝑇 ) = 1
2𝜋𝑖 ∫

𝜎

𝜎′
(−𝜁′

𝜁 (𝜎0 − 𝑖𝑇 )) ℳ( ̃1𝜀)(𝜎0 − 𝑖𝑇 )𝑋𝜎0−𝑖𝑇 𝑑𝜎0.

Definition 4.3.13 (I4New). Let

𝐼4(𝜈, 𝜀,𝑋, 𝑇 ) = 1
2𝜋𝑖 ∫

𝜎

𝜎′
(−𝜁′

𝜁 (𝜎0 + 𝑖𝑇 )) ℳ( ̃1𝜀)(𝜎0 + 𝑖𝑇 )𝑋𝜎0+𝑖𝑇 𝑑𝜎0.

Lemma 4.3.27 (I2NewBound). We have that

|𝐼2(𝜈, 𝜀,𝑋, 𝑇 )| ≪ 𝑋
𝜀
√
𝑇
.

Proof. Note that |𝐼2(𝜈, 𝜀,𝑋, 𝑇 )| =

∣ 1
2𝜋𝑖 ∫

𝜎

𝜎′
(−𝜁′

𝜁 (𝜎0 − 𝑖𝑇 )) ℳ( ̃1𝜀)(𝜎0 − 𝑖𝑇 )𝑋𝜎0−𝑖𝑇 𝑑𝜎0∣ ≪ ∫
𝜎

𝜎′
∣ 𝜁

′

𝜁 (𝜎0 − 𝑖𝑇 )∣⋅|ℳ( ̃1𝜀)(𝜎0−𝑖𝑇 )|⋅𝑋𝜎0 𝑑𝜎0.

Applying Theorem 4.3.11 and Lemma 3.3.10, we have that

|𝐼2(𝜈, 𝜀,𝑋, 𝑇 )| ≪ ∫
𝜎

𝜎′
log2 𝑇 ⋅ 𝑋𝜎0

𝜀 |𝜎0 − 𝑖𝑇 |2 𝑑𝜎0 ≪ 𝑋 log2 𝑇
𝜀𝑇 2 ∫

𝜎

𝜎′
𝑑 𝜎0 = 𝑋 log2 𝑇

𝜀𝑇 2 (𝜎 − 𝜎′).

Here we are using the fact that 𝑋𝜎0 ≤ 𝑋𝜎 = 𝑋 ⋅ 𝑋1/ log𝑋 = 𝑒𝑋 and |𝜎0 − 𝑖𝑇 |2 ≥ 𝑇 2. Now
note that

|𝐼2(𝜈, 𝜀,𝑋, 𝑇 )| ≪ 𝑋 log2 𝑇
𝜀𝑇 2 (𝜎 − 𝜎′) = 𝑋 log2 𝑇

𝜀𝑇 2 log𝑋 + 𝐹𝑋 log𝑇
𝜀𝑇 2 ≪ 𝑋

𝜀
√
𝑇
.

Here we are using the fact that log𝑇 ≪ 𝑇 3/2, log2 𝑇 ≪ 𝑇 3/2, and 𝑋/ log𝑋 ≪ 𝑋.
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Lemma 4.3.28 (I4NewBound). We have that

|𝐼4(𝜈, 𝜀,𝑋, 𝑇 )| ≪ 𝑋
𝜀
√
𝑇
.

Proof. By symmetry, note that

|𝐼2(𝜈, 𝜀,𝑋, 𝑇 )| = |𝐼4(𝜈, 𝜀,𝑋, 𝑇 )| = |𝐼4(𝜈, 𝜀,𝑋, 𝑇 )|.

Applying Lemma 4.3.27 completes the proof.

Definition 4.3.14 (I3New). Let

𝐼3(𝜈, 𝜀,𝑋, 𝑇 ) = 1
2𝜋𝑖 ∫

𝑇

−𝑇
(−𝜁′

𝜁 (𝜎′ + 𝑖𝑡)) ℳ( ̃1𝜀)(𝜎′ + 𝑖𝑡)𝑋𝜎′+𝑖𝑡 𝑑𝑡.

Lemma 4.3.29 (I3NewBound). We have that

|𝐼3(𝜈, 𝜀,𝑋, 𝑇 )| ≪ 𝑋1−𝐹/ log𝑇√𝑇
𝜀 .

Proof. Note that |𝐼3(𝜈, 𝜀,𝑋, 𝑇 )| =

∣ 1
2𝜋𝑖 ∫

𝑇

−𝑇
(−𝜁′

𝜁 (𝜎′ + 𝑖𝑡)) ℳ( ̃1𝜀)(𝜎′ + 𝑖𝑡)𝑋𝜎′+𝑖𝑡 𝑑𝑡∣ ≪ ∫
𝑇

−𝑇
∣ 𝜁

′

𝜁 (𝜎′ + 𝑖𝑡)∣⋅|ℳ( ̃1𝜀)(𝜎′+𝑖𝑡)|⋅𝑋𝜎′ 𝑑𝑡.

Applying Theorem 4.3.12 and Lemma 3.3.10, we have that

|𝐼3(𝜈, 𝜀,𝑋, 𝑇 )| ≪ ∫
𝑇

−𝑇
log2(2 + 𝑇 ) ⋅ 𝑋𝜎′

𝜀 |𝜎′ + 𝑖𝑡|2 𝑑𝑡 ≪ 𝑋1−𝐹/ log𝑇 √
𝑇

𝜀 ∫
𝑇

0

𝑑𝑡
|𝜎′ + 𝑖𝑡|2 .

Here we are using the fact that this integrand is symmetric in 𝑡 about 0 and that log2(2 +
𝑇) ≪

√
𝑇 for sufficiently large 𝑇 . Now note that, by Lemma 4.3.21, we have

1
|𝜎′ + 𝑖𝑡|2 = 1

(1 − 𝛿𝑇 /3)2 + 𝑡2 < 1
(41/42)2 + 𝑡2 .

Thus,

|𝐼3(𝜈, 𝜀,𝑋, 𝑇 )| ≪ 𝑋1−𝐹/ log𝑇√𝑇
𝜀 ∫

𝑇

0

𝑑𝑡
|𝜎′ + 𝑖𝑡|2 ≤ 𝑋1−𝐹/ log𝑇√𝑇

𝜀 ∫
∞

0

𝑑𝑡
(41/42)2 + 𝑡2 .

The integral on the right hand side evaluates to 21𝜋/41, which is just a constant, so the
desired result follows.

Theorem 4.3.13 (SmoothedChebyshevPull3). We have that

𝜓𝜀(𝑋) = ℳ( ̃1𝜀)(1)𝑋1 + 𝐼1 − 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5.

Proof. Pull contours and accumulate the pole of 𝜁′/𝜁 at 𝑠 = 1.
Theorem 4.3.14 (StrongPNT). We have

∑
𝑛≤𝑥

Λ(𝑛) = 𝑥 + 𝑂(𝑥 exp(−𝑐√log𝑥)) .
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Proof. By Theorem 3.5.3 and 4.3.13 we have that

ℳ( ̃1𝜀)(1) 𝑥1 + 𝐼1 − 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5 = 𝜓(𝑥) + 𝑂(𝜀𝑥 log𝑥).

Applying Theorem 3.3.11 and Lemmas 4.3.25, 4.3.27, 4.3.29, 4.3.28, and 4.3.26 we have that

𝜓(𝑥) = 𝑥 + 𝑂(𝜀𝑥) + 𝑂(𝜀𝑥 log𝑥) + 𝑂( 𝑥
𝜀
√
𝑇
) +𝑂(𝑥1−𝐹/ log𝑇√𝑇

𝜀 ) .

We absorb the 𝑂(𝜀𝑥) term into the 𝑂(𝜀𝑥 log𝑥) term and balance the last two terms in 𝑇 .

𝑥
𝜀
√
𝑇

= 𝑥1−𝐹/ log𝑇√𝑇
𝜀 ⟹ 𝑇 = exp(√𝐹 log𝑥).

Thus,

𝜓(𝑥) = 𝑥 + 𝑂(𝜀𝑥 log𝑥) + 𝑂( 𝑥
𝜀 exp((1/2) ⋅ √𝐹 log𝑥)

) .

Now we balance the last two terms in 𝜀.

𝜀𝑥 log𝑥 = 𝑥
𝜀 exp((1/2) ⋅ √𝐹 log𝑥)

⟹ 𝜀 log𝑥 = √log𝑥
exp((1/4) ⋅ √𝐹 log𝑥)

.

Thus,
𝜓(𝑥) = 𝑥 + 𝑂(𝑥 exp(−(

√
𝐹/4) ⋅ √log𝑥)√log𝑥) .

Absorbing the √log𝑥 into the exp(−(
√
𝐹/4) ⋅ √log𝑥) completes the proof.
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Chapter 5

Elementary Corollaries

Lemma 5.0.1 (finsum-range-eq-sum-range). For any arithmetic function 𝑓 and real number
𝑥, one has

∑
𝑛≤𝑥

𝑓(𝑛) = ∑
𝑛≤⌊𝑥⌋+

𝑓(𝑛)

and
∑
𝑛<𝑥

𝑓(𝑛) = ∑
𝑛<⌈𝑥⌉+

𝑓(𝑛).

Proof. Straightforward.

Theorem 5.0.1 (chebyshev-asymptotic). One has

∑
𝑝≤𝑥

log 𝑝 = 𝑥 + 𝑜(𝑥).

Proof. From the prime number theorem we already have

∑
𝑛≤𝑥

Λ(𝑛) = 𝑥 + 𝑜(𝑥)

so it suffices to show that
∑
𝑗≥2

∑
𝑝𝑗≤𝑥

log 𝑝 = 𝑜(𝑥).

Only the terms with 𝑗 ≤ log𝑥/ log 2 contribute, and each 𝑗 contributes at most
√𝑥 log𝑥 to

the sum, so the left-hand side is 𝑂(√𝑥 log2 𝑥) = 𝑜(𝑥) as required.
Corollary 5.0.1 (primorial-bounds). We have

∏
𝑝≤𝑥

𝑝 = exp(𝑥 + 𝑜(𝑥))

Proof. Exponentiate Theorem ??.

Theorem 5.0.2 (pi-asymp). There exists a function 𝑐(𝑥) such that 𝑐(𝑥) = 𝑜(1) as 𝑥 → ∞
and

𝜋(𝑥) = (1 + 𝑐(𝑥))∫
𝑥

2

𝑑𝑡
log 𝑡

for all 𝑥 large enough.
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Proof. We have the identity

𝜋(𝑥) = 1
log𝑥 ∑

𝑝≤𝑥
log 𝑝 +∫

𝑥

2
(∑
𝑝≤𝑡

log 𝑝) 𝑑𝑡
𝑡 log2 𝑡

as can be proven by interchanging the sum and integral and using the fundamental theorem
of calculus. For any 𝜀, we know from Theorem ?? that there is 𝑥𝜀 such that ∑𝑝≤𝑡 log 𝑝 =
𝑡 + 𝑂(𝜀𝑡) for 𝑡 ≥ 𝑥𝜀, hence for 𝑥 ≥ 𝑥𝜀

𝜋(𝑥) = 1
log𝑥(𝑥 + 𝑂(𝜀𝑥)) +∫

𝑥

𝑥𝜀

(𝑡 + 𝑂(𝜀𝑡)) 𝑑𝑡
𝑡 log2 𝑡

+ 𝑂𝜀(1)

where the 𝑂𝜀(1) term can depend on 𝑥𝜀 but is independent of 𝑥. One can evaluate this after
an integration by parts as

𝜋(𝑥) = (1 + 𝑂(𝜀))∫
𝑥

𝑥𝜀

𝑑𝑡
log 𝑡 + 𝑂𝜀(1)

= (1 + 𝑂(𝜀))∫
𝑥

2

𝑑𝑡
log 𝑡

for 𝑥 large enough, giving the claim.

Corollary 5.0.2 (pi-alt). One has

𝜋(𝑥) = (1 + 𝑜(1)) 𝑥
log𝑥

as 𝑥 → ∞.

Proof. An integration by parts gives

∫
𝑥

2

𝑑𝑡
log 𝑡 = 𝑥

log𝑥 − 2
log 2 +∫

𝑥

2

𝑑𝑡
log2 𝑡

.

We have the crude bounds

∫
√𝑥

2

𝑑𝑡
log2 𝑡

= 𝑂(√𝑥)

and
∫

𝑥

√𝑥

𝑑𝑡
log2 𝑡

= 𝑂( 𝑥
log2 𝑥

)

and combining all this we obtain

∫
𝑥

2

𝑑𝑡
log 𝑡 = 𝑥

log𝑥 + 𝑂( 𝑥
log2 𝑥

)

= (1 + 𝑜(1)) 𝑥
log𝑥

and the claim then follows from Theorem 5.0.2.

Let 𝑝𝑛 denote the 𝑛𝑡ℎ prime.
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Proposition 5.0.1 (pn-asymptotic). One has

𝑝𝑛 = (1 + 𝑜(1))𝑛 log𝑛

as 𝑛 → ∞.

Proof. Use Corollary 5.0.2 to show that 𝑛 = 𝜋(𝑝𝑛) ∼ 𝑝𝑛/ log 𝑝𝑛 Taking logs gives log𝑛 ∼
log 𝑝𝑛 − log log 𝑝𝑛 ∼ log 𝑝𝑛. Multiplying these gives 𝑝𝑛 ∼ 𝑛 log𝑛 from which the result
follows.

Corollary 5.0.3 (pn-pn-plus-one). We have 𝑝𝑛+1 − 𝑝𝑛 = 𝑜(𝑝𝑛) as 𝑛 → ∞.

Proof. Easy consequence of preceding proposition.

Corollary 5.0.4 (prime-between). For every 𝜀 > 0, there is a prime between 𝑥 and (1+𝜀)𝑥
for all sufficiently large 𝑥.
Proof. Use Corollary 5.0.2 to show that 𝜋((1 + 𝜀)𝑥) − 𝜋(𝑥) goes to infinity as 𝑥 → ∞.

Proposition 5.0.2. We have |∑𝑛≤𝑥
𝜇(𝑛)
𝑛 | ≤ 1.

Proof. From Möbius inversion 1𝑛=1 = ∑𝑑|𝑛 𝜇(𝑑) and summing we have

1 = ∑
𝑑≤𝑥

𝜇(𝑑)⌊𝑥𝑑 ⌋

for any 𝑥 ≥ 1. Since ⌊𝑥
𝑑 ⌋ = 𝑥

𝑑 − 𝜖𝑑 with 0 ≤ 𝜖𝑑 < 1 and 𝜖𝑥 = 0, we conclude that

1 ≥ 𝑥∑
𝑑≤𝑥

𝜇(𝑑)
𝑑 − (𝑥 − 1)

and the claim follows.

Proposition 5.0.3 (Möbius form of prime number theorem). We have ∑𝑛≤𝑥 𝜇(𝑛) = 𝑜(𝑥).
Proof. From the Dirichlet convolution identity

𝜇(𝑛) log𝑛 = −∑
𝑑|𝑛

𝜇(𝑑)Λ(𝑛/𝑑)

and summing we obtain

∑
𝑛≤𝑥

𝜇(𝑛) log𝑛 = −∑
𝑑≤𝑥

𝜇(𝑑) ∑
𝑚≤𝑥/𝑑

Λ(𝑚).

For any 𝜀 > 0, we have from the prime number theorem that

∑
𝑚≤𝑥/𝑑

Λ(𝑚) = 𝑥/𝑑 + 𝑂(𝜀𝑥/𝑑) + 𝑂𝜀(1)

(divide into cases depending on whether 𝑥/𝑑 is large or small compared to 𝜀). We conclude
that

∑
𝑛≤𝑥

𝜇(𝑛) log𝑛 = −𝑥∑
𝑑≤𝑥

𝜇(𝑑)
𝑑 + 𝑂(𝜀𝑥 log𝑥) + 𝑂𝜀(𝑥).
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Applying (5.0.2) we conclude that

∑
𝑛≤𝑥

𝜇(𝑛) log𝑛 = 𝑂(𝜀𝑥 log𝑥) + 𝑂𝜀(𝑥).

and hence
∑
𝑛≤𝑥

𝜇(𝑛) log𝑥 = 𝑂(𝜀𝑥 log𝑥) + 𝑂𝜀(𝑥) + 𝑂(∑
𝑛≤𝑥

(log𝑥 − log𝑛)).

From Stirling’s formula one has

∑
𝑛≤𝑥

(log𝑥 − log𝑛) = 𝑂(𝑥)

thus
∑
𝑛≤𝑥

𝜇(𝑛) log𝑥 = 𝑂(𝜀𝑥 log𝑥) + 𝑂𝜀(𝑥)

and thus
∑
𝑛≤𝑥

𝜇(𝑛) = 𝑂(𝜀𝑥) + 𝑂𝜀(
𝑥

log𝑥).

Sending 𝜀 → 0 we obtain the claim.

Proposition 5.0.4. We have ∑𝑛≤𝑥 𝜆(𝑛) = 𝑜(𝑥).
Proof. From the identity

𝜆(𝑛) = ∑
𝑑2|𝑛

𝜇(𝑛/𝑑2)

and summing, we have
∑
𝑛≤𝑥

𝜆(𝑛) = ∑
𝑑≤√𝑥

∑
𝑛≤𝑥/𝑑2

𝜇(𝑛).

For any 𝜀 > 0, we have from Proposition 5.0.3 that

∑
𝑛≤𝑥/𝑑2

𝜇(𝑛) = 𝑂(𝜀𝑥/𝑑2) + 𝑂𝜀(1)

and hence on summing in 𝑑

∑
𝑛≤𝑥

𝜆(𝑛) = 𝑂(𝜀𝑥) + 𝑂𝜀(𝑥1/2).

Sending 𝜀 → 0 we obtain the claim.

Proposition 5.0.5 (Alternate Möbius form of prime number theorem). We have∑𝑛≤𝑥 𝜇(𝑛)/𝑛 =
𝑜(1).
Proof. As in the proof of Theorem 5.0.2, we have

1 = ∑
𝑑≤𝑥

𝜇(𝑑)⌊𝑥𝑑 ⌋

= 𝑥∑
𝑑≤𝑥

𝜇(𝑑)
𝑑 −∑

𝑑≤𝑥
𝜇(𝑑){𝑥𝑑 }
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so it will suffice to show that
∑
𝑑≤𝑥

𝜇(𝑑){𝑥𝑑 } = 𝑜(𝑥).

Let 𝑁 be a natural number. It suffices to show that
∑
𝑑≤𝑥

𝜇(𝑑){𝑥𝑑 } = 𝑂(𝑥/𝑁).

if 𝑥 is large enough depending on 𝑁 . We can split the left-hand side as the sum of

∑
𝑑≤𝑥/𝑁

𝜇(𝑑){𝑥𝑑 }

and
𝑁−1
∑
𝑗=1

∑
𝑥/(𝑗+1)<𝑑≤𝑥/𝑗

𝜇(𝑑)(𝑥/𝑑 − 𝑗).

The first term is clearly 𝑂(𝑥/𝑁). For the second term, we can use Theorem 5.0.3 and
summation by parts (using the fact that 𝑥/𝑑 − 𝑗 is monotone and bounded) to find that

∑
𝑥/(𝑗+1)<𝑑≤𝑥/𝑗

𝜇(𝑑)(𝑥/𝑑 − 𝑗) = 𝑜(𝑥)

for any given 𝑗, so in particular
∑

𝑥/(𝑗+1)<𝑑≤𝑥/𝑗
𝜇(𝑑)(𝑥/𝑑 − 𝑗) = 𝑂(𝑥/𝑁2)

for all 𝑗 = 1,… ,𝑁 − 1 if 𝑥 is large enough depending on 𝑁 . Summing all the bounds, we
obtain the claim.

5.1 Consequences of the PNT in arithmetic progres-
sions

Theorem 5.1.1 (Prime number theorem in AP). If 𝑎 (𝑞) is a primitive residue class, then
one has

∑
𝑝≤𝑥∶𝑝=𝑎 (𝑞)

log 𝑝 = 𝑥
𝜙(𝑞) + 𝑜(𝑥).

Proof. This is a routine modification of the proof of Theorem ??.

Corollary 5.1.1 (Dirichlet’s theorem). Any primitive residue class contains an infinite
number of primes.
Proof. If this were not the case, then the sum ∑𝑝≤𝑥∶𝑝=𝑎 (𝑞) log 𝑝 would be bounded in 𝑥,
contradicting Theorem 5.1.1.

5.2 Consequences of the Chebotarev density theorem
Lemma 5.2.1 (Cyclotomic Chebotarev). For any 𝑎 coprime to 𝑚,

∑
𝑁𝔭≤𝑥;𝑁𝔭=𝑎 (𝑚)

log𝑁𝔭 = 1
|𝐺| ∑

𝑁𝔭≤𝑥
log𝑁𝔭.

Proof. This should follow from Lemma 2.7.1 by a Fourier expansion.
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Chapter 6

Explicit estimates

We will try to systematically collect explicit estimates related to the prime number theorem
from the literature, and formalize them in a modular fashion. We divide such estimates into
four classes:

• Zeta function explicit estimates: bounds on the zeta function and its zeroes.

• Primary explicit estimates: those that are directly control 𝜓(𝑥) and 𝑀(𝑥), usually via
information on the zeta function.

• Secondary explicit estimates: these are useful general-purpose estimates on functions
relating to the primes, such as bounds on the 𝑛-th prime, or estimates for the prime
counting function 𝜋(𝑥). These are generally derived from primary estimates and ele-
mentary arguments.

• Tertiary explicit estimates: these are bespoke applications to particular problems in
analytic number theory or combinatorics that often require secondary estimates as
input.

In this project we will state the best available zeta and primary estimates known in the
literature, and try to formalize at least some of them; state the best available secondary
estimates known in the literature, as well as various tools from passing from primary to
secondary estimates, and formalize these; and then finally formalize some tertiary estimates
as applications of the secondary ones.
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Chapter 7

Zeta function estimates

7.1 Definitions
Definition 7.1.1. 𝜌 is understood to lie in the set {𝑠 ∶ 𝜁(𝑠) = 0}, counted with multiplicity.
We will often restrict the zeroes 𝜌 to a rectangle {ℜ𝜌 ∈ 𝐼, ℑ𝜌 ∈ 𝐽}, for instance through
sums of the form ∑ℜ𝜌∈𝐼,ℑ𝜌∈𝐽 𝑓(𝜌).

Definition 7.1.2. We say that the Riemann hypothesis has been verified up to height 𝑇 if
there are no zeroes in the rectangle {ℜ𝜌 ∈ (0.5, 1), ℑ𝜌 ∈ [0, 𝑇 ]}.
Definition 7.1.3 (Section 1.1, FKS2). We say that one has a classical zero-free region with
parameter 𝑅 if 𝑧𝑒𝑡𝑎(𝑠) has no zeroes in the region 𝑅𝑒(𝑠) ≥ 1 − 1/𝑅 ∗ log |ℑ𝑠| for ℑ(𝑠) > 3.
Definition 7.1.4 (Zero counting function N(T)). The number of zeroes of imaginary part
between 0 and T, counting multiplicity

Definition 7.1.5 (Riemann von Mangoldt estimate). An estimate of the form 𝑁(𝑇 ) −
𝑇
2𝜋 log 𝑇

2𝜋𝑒 + 7
8 | ≤ 𝑏1 log𝑇 + 𝑏2 log log𝑇 + 𝑏3 for 𝑇 ≥ 2.

Definition 7.1.6 (Zero density bound). An estimate of the form 𝑁(𝜎, 𝑇 ) ≤ 𝑐1𝑇 𝑝 log𝑞 𝑇 +
𝑐2 log2 𝑇 − 𝑇

2𝜋 log 𝑇
2𝜋𝑒 + 7

8 | ≤ 𝑏1 log𝑇 + 𝑏2 log log𝑇 + 𝑏3 for 𝑇 ≥ 2.

7.2 The estimates of Kadiri, Lumley, and Ng
In this section we establish the primary results of [9].

7.3 The zeta function bounds of Rosser and Schoenfeld
In this section we formalize the zeta function bounds of Rosser and Schoenfeld.

Theorem 7.3.1 (Rosser–Schoenfeld Theorem 19). One has a Riemann von Mangoldt esti-
mate with parameters 0.137, 0.443, and 1.588.

Proof.
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7.4 Approximating the Riemann zeta function
We want a good explicit estimate on

∑
𝑛≤𝑎

1
𝑛𝑠 −∫

𝑎

0

𝑑𝑢
𝑢𝑠 ,

for 𝑎 a half-integer. As it turns out, this is the same problem as that of approximating 𝜁(𝑠)
by a sum ∑𝑛≤𝑎 𝑛−𝑠. This is one of the two1 main, standard ways of approximating 𝜁(𝑠).

The non-explicit version of the result was first proved in [8, Lemmas 1 and 2]. The proof
there uses first-order Euler-Maclaurin combined with a decomposition of ⌊𝑥⌋−𝑥+1/2 that
turns out to be equivalent to Poisson summation. The exposition in [14, §4.7–4.11] uses
first-order Euler-Maclaurin and van de Corput’s Process B; the main idea of the latter is
Poisson summation.

There are already several explicit versions of the result in the literature. In [2], [?] and
[12], what we have is successively sharper explicit versions of Hardy and Littlewood’s original
proof. The proof in [4, Lemma 2.10] proceeds simply by a careful estimation of the terms
in high-order Euler-Maclaurin; it does not use Poisson summation. Finally, [3] is an explicit
version of [14, §4.7–4.11]; it gives a weaker bound than [12] or [4]. The strongest of these
results is [12].

We will give another version here, in part because we wish to relax conditions – we will
work with |ℑ𝑠| < 2𝜋𝑎 rather than |ℑ𝑠| ≤ 𝑎 – and in part to show that one can prove an
asymptotically optimal result easily and concisely. We will use first-order Euler-Maclaurin
and Poisson summation. We assume that 𝑎 is a half-integer; if one inserts the same assump-
tion into [4, Lemma 2.10], one can improve the result there, yielding an error term closer to
the one here.

For additional context, see the Zulip discussion at https://leanprover.zulipchat.
com/#narrow/channel/423402-PrimeNumberTheorem.2B/topic/Let.20us.20formalize.
20an.20appendix

Definition 7.4.1 (e). We recall that 𝑒(𝛼) = 𝑒2𝜋𝑖𝛼.

7.4.1 The decay of a Fourier transform
Our first objective will be to estimate the Fourier transform of 𝑡−𝑠⊮[𝑎,𝑏]. In particular,
we will show that, if 𝑎 and 𝑏 are half-integers, the Fourier cosine transform has quadratic
decay when evaluated at integers. In general, for real arguments, the Fourier transform of a
discontinuous function such as 𝑡−𝑠⊮[𝑎,𝑏] does not have quadratic decay.

Lemma 7.4.1 (Fourier transform of a truncated power law). Let 𝑠 = 𝜎 + 𝑖𝜏 , 𝜎 ≥ 0, 𝜏 ∈ R.
Let 𝜈 ∈ R ∖ {0}, 𝑏 > 𝑎 > |𝜏|

2𝜋|𝜈| . Then

∫
𝑏

𝑎
𝑡−𝑠𝑒(𝜈𝑡)𝑑𝑡 = 𝑡−𝜎𝑒(𝜑𝜈(𝑡))

2𝜋𝑖𝜑′𝜈(𝑡)
∣
𝑏

𝑎
+ 𝜎∫

𝑏

𝑎

𝑡−𝜎−1

2𝜋𝑖𝜑′𝜈(𝑡)
𝑒(𝜑𝜈(𝑡))𝑑𝑡 +∫

𝑏

𝑎

𝑡−𝜎𝜑″
𝜈(𝑡)

2𝜋𝑖(𝜑′𝜈(𝑡))2
𝑒(𝜑𝜈(𝑡))𝑑𝑡,

(7.1)
where 𝜑𝜈(𝑡) = 𝜈𝑡 − 𝜏

2𝜋 log 𝑡.
1The other one is the approximate functional equation.
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Proof. We write 𝑡−𝑠𝑒(𝜈𝑡) = 𝑡−𝜎𝑒(𝜑𝜈(𝑡)) and integrate by parts with 𝑢 = 𝑡−𝜎/(2𝜋𝑖𝜑′
𝜈(𝑡)),

𝑣 = 𝑒(𝜑𝜈(𝑡)). Here 𝜑′
𝜈(𝑡) = 𝜈 − 𝜏/(2𝜋𝑡) ≠ 0 for 𝑡 ∈ [𝑎, 𝑏] because 𝑡 ≥ 𝑎 > |𝜏|/(2𝜋|𝜈|) implies

|𝜈| > |𝜏|/(2𝜋𝑡). Clearly

𝑢𝑑𝑣 = 𝑡−𝜎

2𝜋𝑖𝜑′𝜈(𝑡)
⋅ 2𝜋𝑖𝜑′

𝜈(𝑡)𝑒(𝜑𝜈(𝑡))𝑑𝑡 = 𝑡−𝜎𝑒(𝜑𝜈(𝑡))𝑑𝑡,

while
𝑑𝑢 = (−𝜎𝑡−𝜎−1

2𝜋𝑖𝜑′𝜈(𝑡)
− 𝑡−𝜎𝜑″

𝜈(𝑡)
2𝜋𝑖(𝜑′𝜈(𝑡))2

)𝑑𝑡.

Lemma 7.4.2 (Total variation of a function with monotone absolute value). Let 𝑔 ∶ [𝑎, 𝑏] →
R be continuous, with |𝑔(𝑡)| non-increasing. Then 𝑔 is monotone, and ‖𝑔‖TV = |𝑔(𝑎)|−|𝑔(𝑏)|.
Proof. Suppose 𝑔 changed sign: 𝑔(𝑎′) > 0 > 𝑔(𝑏′) or 𝑔(𝑎′) < 0 < 𝑔(𝑏′) for some 𝑎 ≤ 𝑎′ <
𝑏′ ≤ 𝑏. By IVT, there would be an 𝑟 ∈ [𝑎′, 𝑏′] such that 𝑔(𝑟) = 0. Since |𝑔| is non-increasing,
𝑔(𝑏′) = 0; contradiction. So, 𝑔 does not change sign: either 𝑔 ≤ 0 or 𝑔 ≥ 0.

Thus, there is an 𝜀 ∈ {−1, 1} such that 𝑔(𝑡) = 𝜀|𝑔(𝑡)| for all 𝑡 ∈ [𝑎, 𝑏]. Hence, 𝑔 is
monotone. Then ‖𝑔‖TV = |𝑔(𝑎) − 𝑔(𝑏)|. Since |𝑔(𝑎)| ≥ |𝑔(𝑏)| and 𝑔(𝑎), 𝑔(𝑏) are either both
non-positive or non-negative, |𝑔(𝑎) − 𝑔(𝑏)| = |𝑔(𝑎)| − |𝑔(𝑏)|.
Lemma 7.4.3 (Non-stationary phase estimate). Let 𝜑 ∶ [𝑎, 𝑏] → R be 𝐶1 with 𝜑′(𝑡) ≠ 0
for all 𝑡 ∈ [𝑎, 𝑏]. Let ℎ ∶ [𝑎, 𝑏] → R be such that 𝑔(𝑡) = ℎ(𝑡)/𝜑′(𝑡) is continuous and |𝑔(𝑡)| is
non-increasing. Then

∣∫
𝑏

𝑎
ℎ(𝑡)𝑒(𝜑(𝑡))𝑑𝑡∣ ≤ |𝑔(𝑎)|

𝜋 .

Proof. Since 𝜑 is 𝐶1, 𝑒(𝜑(𝑡)) is 𝐶1, and ℎ(𝑡)𝑒(𝜑(𝑡)) = ℎ(𝑡)
2𝜋𝑖𝜑′(𝑡)

𝑑
𝑑𝑡𝑒(𝜑(𝑡)) everywhere. By

Lemma 7.4.2, 𝑔 is of bounded variation. Hence, we can integrate by parts:

∫
𝑏

𝑎
ℎ(𝑡)𝑒(𝜑(𝑡))𝑑𝑡 = ℎ(𝑡)𝑒(𝜑(𝑡))

2𝜋𝑖𝜑′(𝑡) ∣
𝑏

𝑎
−∫

𝑏

𝑎
𝑒(𝜑(𝑡)) 𝑑 ( ℎ(𝑡)

2𝜋𝑖𝜑′(𝑡)) .

The first term on the right has absolute value ≤ |𝑔(𝑎)|+|𝑔(𝑏)|
2𝜋 . Again by Lemma 7.4.2,

∣∫
𝑏

𝑎
𝑒(𝜑(𝑡)) 𝑑 ( ℎ(𝑡)

2𝜋𝑖𝜑′(𝑡))∣ ≤ 1
2𝜋 ‖𝑔‖TV = |𝑔(𝑎)| − |𝑔(𝑏)|

2𝜋 .

We are done by |𝑔(𝑎)|+|𝑔(𝑏)|
2𝜋 + |𝑔(𝑎)|−|𝑔(𝑏)|

2𝜋 = |𝑔(𝑎)|
𝜋 .

Lemma 7.4.4 (A decreasing function). Let 𝜎 ≥ 0, 𝜏 ∈ R, 𝜈 ∈ R ∖ {0}. Let 𝑏 > 𝑎 > |𝜏|
2𝜋|𝜈| .

Then, for any 𝑘 ≥ 1, 𝑓(𝑡) = 𝑡−𝜎−𝑘|2𝜋𝜈 − 𝜏/𝑡|−𝑘−1 is decreasing on [𝑎, 𝑏].
Proof. Let 𝑎 ≤ 𝑡 ≤ 𝑏. Since ∣ 𝜏

𝑡𝜈 ∣ < 2𝜋, we see that 2𝜋 − 𝜏
𝜈𝑡 > 0, and so |2𝜋𝜈 − 𝜏/𝑡|−𝑘−1 =

|𝜈|−𝑘−1 (2𝜋 − 𝜏
𝑡𝜈 )

−𝑘−1. Now we take logarithmic derivatives:

𝑡(log 𝑓(𝑡))′ = −(𝜎 + 𝑘) − (𝑘 + 1) 𝜏/𝑡
2𝜋𝜈 − 𝜏/𝑡 = −𝜎 − 2𝜋𝑘 + 𝜏

𝑡𝜈
2𝜋 − 𝜏

𝑡𝜈
< −𝜎 ≤ 0,

since, again by |𝜏|
𝑡|𝜈| < 2𝜋 and 𝑘 ≥ 1, we have 2𝜋𝑘+ 𝜏

𝑡𝜈 > 0, and, as we said, 2𝜋 − 𝜏
𝑡𝜈 > 0.
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Lemma 7.4.5 (Estimating an integral). Let 𝑠 = 𝜎 + 𝑖𝜏 , 𝜎 ≥ 0, 𝜏 ∈ R. Let 𝜈 ∈ R ∖ {0},
𝑏 > 𝑎 > |𝜏|

2𝜋|𝜈| . Then

∫
𝑏

𝑎
𝑡−𝑠𝑒(𝜈𝑡)𝑑𝑡 = 𝑡−𝜎𝑒(𝜑𝜈(𝑡))

2𝜋𝑖𝜑′𝜈(𝑡)
∣
𝑏

𝑎
+ 𝑎−𝜎−1

2𝜋2 𝑂∗ ( 𝜎
(𝜈 − 𝜗)2 + |𝜗|

|𝜈 − 𝜗|3) ,

where 𝜑𝜈(𝑡) = 𝜈𝑡 − 𝜏
2𝜋 log 𝑡 and 𝜗 = 𝜏

2𝜋𝑎 .

Proof. Apply Lemma 7.4.1. Since 𝜑′
𝜈(𝑡) = 𝜈 − 𝜏/(2𝜋𝑡), we know by Lemma 7.4.4 (with

𝑘 = 1) that 𝑔1(𝑡) = 𝑡−𝜎−1
(𝜑′𝜈(𝑡))2 is decreasing on [𝑎, 𝑏]. We know that 𝜑′

𝜈(𝑡) ≠ 0 for 𝑡 ≥ 𝑎 by
𝑎 > |𝜏|

2𝜋|𝜈| , and so we also know that 𝑔1(𝑡) is continuous for 𝑡 ≥ 𝑎. Hence, by Lemma 7.4.3,

∣∫
𝑏

𝑎

𝑡−𝜎−1

2𝜋𝑖𝜑′𝜈(𝑡)
𝑒(𝜑𝜈(𝑡))𝑑𝑡∣ ≤

1
2𝜋 ⋅ |𝑔1(𝑎)|𝜋 = 1

2𝜋2
𝑎−𝜎−1

|𝜈 − 𝜗|2
,

since 𝜑′
𝜈(𝑎) = 𝜈 −𝜗. We remember to include the factor of 𝜎 in front of an integral in (7.1).

Since 𝜑′
𝜈(𝑡) is as above and 𝜑″

𝜈(𝑡) = 𝜏/(2𝜋𝑡2), we know by Lemma 7.4.4 (with 𝑘 = 2)
that 𝑔2(𝑡) = 𝑡−𝜎|𝜑″

𝜈 (𝑡)|
|𝜑′𝜈(𝑡)|3 = |𝜏|

2𝜋
𝑡−𝜎−2

|𝜑′𝜈(𝑡)|3 is decreasing on [𝑎, 𝑏] we also know, as before, that 𝑔2(𝑡)
is continuous. Hence, again by Lemma 7.4.3,

∣∫
𝑏

𝑎

𝑡−𝜎𝜑″
𝜈(𝑡)

2𝜋𝑖(𝜑′𝜈(𝑡))2
𝑒(𝜑𝜈(𝑡))𝑑𝑡∣ ≤

1
2𝜋

|𝑔2(𝑎)|
𝜋 = 1

2𝜋2
𝑎−𝜎−1|𝜗|
|𝜈 − 𝜗|3

.

Lemma 7.4.6 (Estimating an sum). Let 𝑠 = 𝜎+𝑖𝜏 , 𝜎, 𝜏 ∈ R. Let 𝑛 ∈ Z>0. Let 𝑎, 𝑏 ∈ Z+ 1
2 ,

𝑏 > 𝑎 > |𝜏|
2𝜋𝑛 . Write 𝜑𝜈(𝑡) = 𝜈𝑡 − 𝜏

2𝜋 log 𝑡. Then

1
2 ∑

𝜈=±𝑛

𝑡−𝜎𝑒(𝜑𝜈(𝑡))
2𝜋𝑖𝜑′𝜈(𝑡)

∣
𝑏

𝑎
= (−1)𝑛𝑡−𝑠 ⋅ 𝜏

2𝜋𝑡
2𝜋𝑖 (𝑛2 − ( 𝜏

2𝜋𝑡)
2)

∣
𝑏

𝑎

.

Proof. Since 𝑒(𝜑𝜈(𝑡)) = 𝑒(𝜈𝑡)𝑡−𝑖𝜏 = (−1)𝜈𝑡−𝑖𝜏 for any half-integer 𝑡 and any integer 𝜈,

𝑡−𝜎𝑒(𝜑𝜈(𝑡))
2𝜋𝑖𝜑′𝜈(𝑡)

∣
𝑏

𝑎
= (−1)𝜈𝑡−𝑠

2𝜋𝑖𝜑′𝜈(𝑡)
∣
𝑏

𝑎

for 𝜈 = ±𝑛. Clearly (−1)𝜈 = (−1)𝑛. Since 𝜑′
𝜈(𝑡) = 𝜈 − 𝛼 for 𝛼 = 𝜏

2𝜋𝑡 ,

1
2 ∑

𝜈=±𝑛

1
𝜑′𝜈(𝑡)

= 1/2
𝑛 − 𝛼 + 1/2

−𝑛 − 𝛼 = −𝛼
𝛼2 − 𝑛2 = 𝛼

𝑛2 − 𝛼2 .

It is this easy step that gives us quadratic decay on 𝑛. It is just as in the proof of van
der Corput’s Process B in, say, [13, I.6.3, Thm. 4].
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Proposition 7.4.1 (Estimating a Fourier cosine integral). Let 𝑠 = 𝜎 + 𝑖𝜏 , 𝜎 ≥ 0, 𝜏 ∈ R.
Let 𝑎, 𝑏 ∈ Z+ 1

2 , 𝑏 > 𝑎 > |𝜏|
2𝜋 . Write 𝜗 = 𝜏

2𝜋𝑎 . Then, for any integer 𝑛 ≥ 1,

∫
𝑏

𝑎
𝑡−𝑠 cos 2𝜋𝑛𝑡 𝑑𝑡 = ((−1)𝑛𝑡−𝑠

2𝜋𝑖 ⋅
𝜏

2𝜋𝑡
𝑛2 − ( 𝜏

2𝜋𝑡)
2)∣

𝑏

𝑎

+ 𝑎−𝜎−1

4𝜋2 𝑂∗ ( 𝜎
(𝑛 − 𝜗)2 + 𝜎

(𝑛 + 𝜗)2 + |𝜗|
|𝑛 − 𝜗|3 + |𝜗|

|𝑛 + 𝜗|3) .

Proof. Write cos 2𝜋𝑛𝑡 = 1
2 (𝑒(𝑛𝑡)+𝑒(−𝑛𝑡)). Since 𝑛 ≥ 1 and 𝑎 > |𝜏|

2𝜋 , we know that 𝑎 > |𝜏|
2𝜋𝑛 ,

and so we can apply Lemma 7.4.5 with 𝜈 = ±𝑛. We then apply Lemma 7.4.6 to combine
the boundary contributions |𝑏𝑎 for 𝜈 = ±𝑛.

7.4.2 Approximating zeta(s)
We start with an application of Euler-Maclaurin.
Lemma 7.4.7 (Identity for a partial sum of zeta(s) for integer b). Let 𝑏 > 0, 𝑏 ∈ Z. Then,
for all 𝑠 ∈ C ∖ {1} with ℜ𝑠 > 0,

∑
𝑛≤𝑏

1
𝑛𝑠 = 𝜁(𝑠) + 𝑏1−𝑠

1 − 𝑠 + 𝑏−𝑠

2 + 𝑠∫
∞

𝑏
({𝑦} − 1

2)
𝑑𝑦
𝑦𝑠+1 . (7.2)

Proof. Assume first that ℜ𝑠 > 1. By first-order Euler-Maclaurin,

∑
𝑛>𝑏

1
𝑛𝑠 = ∫

∞

𝑏

𝑑𝑦
𝑦𝑠 +∫

∞

𝑏
({𝑦} − 1

2)𝑑 ( 1
𝑦𝑠) .

Here ∫∞
𝑏

𝑑𝑦
𝑦𝑠 = − 𝑏1−𝑠

1−𝑠 and 𝑑 ( 1
𝑦𝑠 ) = − 𝑠

𝑦𝑠+1 𝑑𝑦. Hence, by ∑𝑛≤𝑏
1
𝑛𝑠 = 𝜁(𝑠) − ∑𝑛>𝑏

1
𝑛𝑠 for

ℜ𝑠 > 1,
∑
𝑛≤𝑏

1
𝑛𝑠 = 𝜁(𝑠) + 𝑏1−𝑠

1 − 𝑠 +∫
∞

𝑏
({𝑦} − 1

2)
𝑠

𝑦𝑠+1 𝑑𝑦.

Since the integral converges absolutely for ℜ𝑠 > 0, both sides extend holomorphically to
{𝑠 ∈ C ∶ ℜ𝑠 > 0, 𝑠 ≠ 1}; thus, the equation holds throughout that region.

Lemma 7.4.8 (Identity for a partial sum of zeta(s)). Let 𝑏 > 0, 𝑏 ∈ Z + 1
2 . Then, for all

𝑠 ∈ C ∖ {1} with ℜ𝑠 > 0,

∑
𝑛≤𝑏

1
𝑛𝑠 = 𝜁(𝑠) + 𝑏1−𝑠

1 − 𝑠 + 𝑠∫
∞

𝑏
({𝑦} − 1

2)
𝑑𝑦
𝑦𝑠+1 . (7.3)

Proof. Assume first that ℜ𝑠 > 1. By first-order Euler-Maclaurin and 𝑏 ∈ Z+ 1
2 ,

∑
𝑛>𝑏

1
𝑛𝑠 = ∫

∞

𝑏

𝑑𝑦
𝑦𝑠 +∫

∞

𝑏
({𝑦} − 1

2)𝑑 ( 1
𝑦𝑠) .

Here ∫∞
𝑏

𝑑𝑦
𝑦𝑠 = − 𝑏1−𝑠

1−𝑠 and 𝑑 ( 1
𝑦𝑠 ) = − 𝑠

𝑦𝑠+1 𝑑𝑦. Hence, by ∑𝑛≤𝑏
1
𝑛𝑠 = 𝜁(𝑠) − ∑𝑛>𝑏

1
𝑛𝑠 for

ℜ𝑠 > 1,
∑
𝑛≤𝑏

1
𝑛𝑠 = 𝜁(𝑠) + 𝑏1−𝑠

1 − 𝑠 +∫
∞

𝑏
({𝑦} − 1

2)
𝑠

𝑦𝑠+1 𝑑𝑦.

Since the integral converges absolutely for ℜ𝑠 > 0, both sides extend holomorphically to
{𝑠 ∈ C ∶ ℜ𝑠 > 0, 𝑠 ≠ 1}; thus, the equation holds throughout that region.
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Lemma 7.4.9 (Estimate for a partial sum of 𝜁(𝑠)). Let 𝑏 > 𝑎 > 0, 𝑏 ∈ Z+ 1
2 . Then, for all

𝑠 ∈ C ∖ {1} with 𝜎 = ℜ𝑠 > 0,

∑
𝑛≤𝑎

1
𝑛𝑠 = − ∑

𝑎<𝑛≤𝑏

1
𝑛𝑠 + 𝜁(𝑠) + 𝑏1−𝑠

1 − 𝑠 + 𝑂∗ ( |𝑠|
2𝜎𝑏𝜎) .

Proof. By Lemma 7.4.8, ∑𝑛≤𝑎 = ∑𝑛≤𝑏 −∑𝑎<𝑛≤𝑏, ∣{𝑦} − 1
2 ∣ ≤ 1

2 and ∫∞
𝑏

𝑑𝑦
|𝑦𝑠+1| = 1

𝜎𝑏𝜎 .

Lemma 7.4.10 (Poisson summation for a partial sum of 𝜁(𝑠)). Let 𝑎, 𝑏 ∈ R ∖Z, 𝑏 > 𝑎 > 0.
Let 𝑠 ∈ C ∖ {1}. Define 𝑓 ∶ R → C by 𝑓(𝑦) = 1[𝑎,𝑏](𝑦)/𝑦𝑠. Then

∑
𝑎<𝑛≤𝑏

1
𝑛𝑠 = 𝑏1−𝑠 − 𝑎1−𝑠

1 − 𝑠 + lim
𝑁→∞

𝑁
∑
𝑛=1

( ̂𝑓(𝑛) + ̂𝑓(−𝑛)).

Proof. Since 𝑎 ∉ Z, ∑𝑎<𝑛≤𝑏
1
𝑛𝑠 = ∑𝑛∈Z 𝑓(𝑛). By Poisson summation (as in [10, Thm. D.3])

∑
𝑛∈Z

𝑓(𝑛) = lim
𝑁→∞

𝑁
∑

𝑛=−𝑁
̂𝑓(𝑛) = ̂𝑓(0) + lim

𝑁→∞

𝑁
∑
𝑛=1

( ̂𝑓(𝑛) + ̂𝑓(−𝑛)),

where we use the facts that 𝑓 is in 𝐿1, of bounded variation, and (by 𝑎, 𝑏 ∉ Z) continuous
at every integer. Now

̂𝑓(0) = ∫
R
𝑓(𝑦)𝑑𝑦 = ∫

𝑏

𝑎

𝑑𝑦
𝑦𝑠 = 𝑏1−𝑠 − 𝑎1−𝑠

1 − 𝑠 .

We could prove these equations starting from Euler’s product for sin𝜋𝑧.
Lemma 7.4.11 (Euler/Mittag-Leffler expansion for cosec). Let 𝑧 ∈ C, 𝑧 ∉ Z. Then

𝜋
sin𝜋𝑧 = 1

𝑧 +∑
𝑛>0

(−1)𝑛 ( 1
𝑧 − 𝑛 + 1

𝑧 + 𝑛) .

Proof. Let us start from the Mittag-Leffler expansion 𝜋 cot𝜋𝑠 = 1
𝑠 +∑𝑛 ( 1

𝑠−𝑛 + 1
𝑠+𝑛).

Applying the trigonometric identity cot𝑢 − cot (𝑢 + 𝜋
2 ) = cot𝑢 + tan𝑢 = 2

sin2𝑢 with
𝑢 = 𝜋𝑧/2, and letting 𝑠 = 𝑧/2, 𝑠 = (𝑧 + 1)/2, we see that

𝜋
sin𝜋𝑧 = 𝜋

2 cot 𝜋𝑧2 − 𝜋
2 cot 𝜋(𝑧 + 1)

2

= 1/2
𝑧/2 +∑

𝑛
( 1/2

𝑧
2 − 𝑛 + 1/2

𝑧
2 + 𝑛)− 1/2

(𝑧 + 1)/2 −∑
𝑛

( 1/2
𝑧+1
2 − 𝑛 + 1/2

𝑧+1
2 + 𝑛)

= 1
𝑧 +∑

𝑛
( 1
𝑧 − 2𝑛 + 1

𝑧 + 2𝑛) −∑
𝑛

( 1
𝑧 − (2𝑛 − 1) + 1

𝑧 + (2𝑛 − 1))

after reindexing the second sum. Regrouping terms again, we obtain our equation.

Lemma 7.4.12 (Euler/Mittag-Leffler expansion for cosec squared). Let 𝑧 ∈ C, 𝑧 ∉ Z. Then

𝜋2

sin2 𝜋𝑧
=

∞
∑

𝑛=−∞

1
(𝑧 − 𝑛)2 .
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Proof. Differentiate the expansion of 𝜋 cot𝜋𝑧 term-by-term because it converges uniformly
on compact subsets of C ∖ Z. By (𝜋 cot𝜋𝑧)′ = − 𝜋2

sin2 𝜋𝑧 and ( 1
𝑧±𝑛)

′ = − 1
(𝑧±𝑛)2 , we are

done.

Lemma 7.4.13 (Estimate for an inverse cubic series). For 𝜗 ∈ R with 0 ≤ |𝜗| < 1,

∑
𝑛

( 1
(𝑛 − 𝜗)3 + 1

(𝑛 + 𝜗)3) ≤ 1
(1 − |𝜗|)3 + 2𝜁(3) − 1.

Proof. Since 1
(𝑛−𝜗)3 + 1

(𝑛+𝜗)3 is even, we may replace 𝜗 by |𝜗|. Then we rearrange the sum:

∞
∑
𝑛=1

( 1
(𝑛 − |𝜗|)3 + 1

(𝑛 + |𝜗|)3) = 1
(1 − |𝜗|)3 +

∞
∑
𝑛=1

( 1
(𝑛 + 1 − |𝜗|)3

+ 1
(𝑛 + |𝜗|)3

).

We may write (𝑛 + 1− |𝜗|)3, (𝑛 + |𝜗|)3 as (𝑛 + 1
2 − 𝑡)3, (𝑛 + 1

2 + 𝑡)3 for 𝑡 = |𝜗| − 1/2. Since
1/𝑢3 is convex, 1

(𝑛+1/2−𝑡)3 + 1
(𝑛+1/2+𝑡)3 reaches its maximum on [−1/2, 1/2] at the endpoints.

Hence
∞
∑
𝑛=1

( 1
(𝑛 + 1 − |𝜗|)3

+ 1
(𝑛 + |𝜗|)3

) ≤
∞
∑
𝑛=1

( 1
𝑛3 + 1

(𝑛 + 1)3) = 2𝜁(3) − 1.

Lemma 7.4.14 (Estimate for a Fourier sum). Let 𝑠 = 𝜎 + 𝑖𝜏 , 𝜎 ≥ 0, 𝜏 ∈ R, with 𝑠 ≠ 1.
Let 𝑏 > 𝑎 > 0, 𝑎, 𝑏 ∈ Z + 1

2 , with 𝑎 > |𝜏|
2𝜋 . Define 𝑓 ∶ R → C by 𝑓(𝑦) = 1[𝑎,𝑏](𝑦)/𝑦𝑠. Write

𝜗 = 𝜏
2𝜋𝑎 , 𝜗− = 𝜏

2𝜋𝑏 . Then

∑
𝑛

( ̂𝑓(𝑛) + ̂𝑓(−𝑛)) = 𝑎−𝑠𝑔(𝜗)
2𝑖 − 𝑏−𝑠𝑔(𝜗−)

2𝑖 + 𝑂∗ (𝐶𝜎,𝜗
𝑎𝜎+1)

with absolute convergence, where 𝑔(𝑡) = 1
sin𝜋𝑡 − 1

𝜋𝑡 for 𝑡 ≠ 0, 𝑔(0) = 0, and

𝐶𝜎,𝜗 = {
𝜎
2 ( 1

sin2 𝜋𝜗 − 1
(𝜋𝜗)2 ) + |𝜗|

2𝜋2 ( 1
(1−|𝜗|)3 + 2𝜁(3) − 1) for 𝜗 ≠ 0,

𝜎/6 for 𝜗 = 0. (7.4)

Proof. By Proposition 7.4.1, multiplying by 2 (since 𝑒(−𝑛𝑡) + 𝑒(𝑛𝑡) = 2 cos 2𝜋𝑛𝑡),

̂𝑓(𝑛) + ̂𝑓(−𝑛) = 𝑎−𝑠

2𝜋𝑖
(−1)𝑛+12𝜗
𝑛2 − 𝜗2 − 𝑏−𝑠

2𝜋𝑖
(−1)𝑛+12𝜗−
𝑛2 − 𝜗2−

+ 𝑎−𝜎−1

2𝜋2 𝑂∗ ( 𝜎
(𝑛 − 𝜗)2 + 𝜎

(𝑛 + 𝜗)2 + |𝜗|
(𝑛 − 𝜗)3 + |𝜗|

(𝑛 + 𝜗)3) , (7.5)

where 𝜗− = 𝜏/(2𝜋𝑏). Note |𝜗−| ≤ |𝜗| < 1. By the Lemma ??,

∑
𝑛

(−1)𝑛+12𝑧
𝑛2 − 𝑧2 = 𝜋

sin𝜋𝑧 − 1
𝑧

for 𝑧 ≠ 0, while ∑𝑛
(−1)𝑛+12𝑧
𝑛2−𝑧2 = ∑𝑛 0 = 0 for 𝑧 = 0. Moreover, by Lemmas 7.4.12 and

7.4.13, for 𝜗 ≠ 0,

∑
𝑛

( 𝜎
(𝑛 − 𝜗)2 + 𝜎

(𝑛 + 𝜗)2) ≤ 𝜎 ⋅ ( 𝜋2

sin2 𝜋𝜗
− 1

𝜗2) ,
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∑
𝑛

( |𝜗|
(𝑛 − 𝜗)3 + |𝜗|

(𝑛 + 𝜗)3) ≤ |𝜗| ⋅ ( 1
(1 − |𝜗|)3 + 2𝜁(3) − 1) .

If 𝜗 = 0, then ∑𝑛 ( 𝜎
(𝑛−𝜗)2 + 𝜎

(𝑛+𝜗)2 ) = 2𝜎∑∞
𝑛=1

1
𝑛2 = 𝜎 𝜋2

3 .

Proposition 7.4.2 (Approximation of zeta(s) by a partial sum). Let 𝑠 = 𝜎 + 𝑖𝜏 , 𝜎 ≥ 0,
𝜏 ∈ R, with 𝑠 ≠ 1. Let 𝑎 ∈ Z+ 1

2 with 𝑎 > |𝜏|
2𝜋 . Then

𝜁(𝑠) = ∑
𝑛≤𝑎

1
𝑛𝑠 − 𝑎1−𝑠

1 − 𝑠 + 𝑐𝜗𝑎−𝑠 +𝑂∗ (𝐶𝜎,𝜗
𝑎𝜎+1) , (7.6)

where 𝜗 = 𝜏
2𝜋𝑎 , 𝑐𝜗 = 𝑖

2 ( 1
sin𝜋𝜗 − 1

𝜋𝜗) for 𝜗 ≠ 0, 𝑐0 = 0, and 𝐶𝜎,𝜗 is as in (7.4).

Proof. Assume first that 𝜎 > 0. Let 𝑏 ∈ Z + 1
2 with 𝑏 > 𝑎, and define 𝑓(𝑦) = 1[𝑎,𝑏](𝑦)

𝑦𝑠 . By
Lemma 7.4.9 and Lemma 7.4.10,

∑
𝑛≤𝑎

1
𝑛𝑠 = 𝜁(𝑠) + 𝑎1−𝑠

1 − 𝑠 − lim
𝑁→∞

𝑁
∑
𝑛=1

( ̂𝑓(𝑛) + ̂𝑓(−𝑛)) + 𝑂∗ (2|𝑠|
𝜎𝑏𝜎) .

We apply Lemma 7.4.14 to estimate lim𝑁→∞ ∑𝑁
𝑛=1( ̂𝑓(𝑛) + ̂𝑓(−𝑛)). We obtain

∑
𝑛≤𝑎

1
𝑛𝑠 = 𝜁(𝑠) + 𝑎1−𝑠

1 − 𝑠 − 𝑎−𝑠𝑔(𝜗)
2𝑖 + 𝑂∗ (𝐶𝜎,𝜗

𝑎𝜎+1)+ 𝑏−𝑠𝑔(𝜗−)
2𝑖 + 𝑂∗ (2|𝑠|

𝜎𝑏𝜎) ,

where 𝜗− = 𝜏
2𝜋𝑏 and 𝑔(𝑡) is as in Lemma 7.4.14, and so − 𝑔(𝜗)

2𝑖 = 𝑐𝜗. We let 𝑏 → ∞ through
the half-integers, and obtain (7.6), since 𝑏−𝜎 → 0, 𝜗− → 0 and 𝑔(𝜗−) → 𝑔(0) = 0 as 𝑏 → ∞.

Finally, the case 𝜎 = 0 follows since all terms in (7.6) extend continuously to 𝜎 = 0.
Remark 7.4.1. The term 𝑐𝜗𝑎−𝑠 in (7.6) does not seem to have been worked out before in
the literature; the factor of 𝑖 in 𝑐𝜗 was a surprise. For the sake of comparison, let us note
that, if 𝑎 ≥ 𝑥, then |𝜗| ≤ 1/2𝜋, and so |𝑐𝜗| ≤ |𝑐±1/2𝜋| = 0.04291… and |𝐶𝜎,𝜗| ≤ |𝐶𝜎,±1/2𝜋| ≤
0.176𝜎 + 0.246. While 𝑐𝜗 is optimal, 𝐶𝜎,𝜗 need not be – but then that is irrelevant for most
applications.
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Chapter 8

Primary explicit estimates

8.1 Definitions
In this section we define the basic types of primary estimates we will work with in the
project.

Key references:
FKS1: Fiori–Kadiri–Swidninsky arXiv:2204.02588
FKS2: Fiori–Kadiri–Swidninsky arXiv:2206.12557

Definition 8.1.1 (Equation (2) of FKS2). 𝐸𝜓(𝑥) = |𝜓(𝑥) − 𝑥|/𝑥
Definition 8.1.2 (Definition 1, FKS2). We say that 𝐸𝜓 satisfies a classical bound with
parameters 𝐴,𝐵,𝐶,𝑅, 𝑥0 if for all 𝑥 ≥ 𝑥0 we have

𝐸𝜓(𝑥) ≤ 𝐴( log𝑥
𝑅 )

𝐵
exp(−𝐶 ( log𝑥

𝑅 )
1/2

).

8.2 A Lemma involving the Möbius Function
In this section we establish a lemma involving sums of the Möbius function.

Definition 8.2.1 (Q). 𝑄(𝑥) is the number of squarefree integers ≤ 𝑥.
Definition 8.2.2 (R). 𝑅(𝑥) = 𝑄(𝑥) − 𝑥/𝜁(2).
Definition 8.2.3 (M). 𝑀(𝑥) is the summatory function of the Möbius function.

Sublemma 8.2.1 (Mobius Lemma 1, initial step). For any 𝑥 > 0,

𝑄(𝑥) = ∑
𝑘≤𝑥

𝑀 (√𝑥
𝑘)

.

Proof. We compute
𝑄(𝑥) = ∑

𝑛≤𝑥
∑

𝑑∶𝑑2|𝑛
𝜇(𝑑) = ∑

𝑘,𝑑∶𝑘𝑑2≤𝑥
𝜇(𝑑)

giving the claim.
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Lemma 8.2.1 (Mobius Lemma 1). For any 𝑥 > 0,

𝑅(𝑥) = ∑
𝑘≤𝑥

𝑀 (√𝑥
𝑘) −∫

𝑥

0
𝑀 (√𝑥

𝑢)𝑑𝑢. (8.1)

Proof. The equality is immediate from Theorem 8.2.1 and exchanging the order of ∑ and
∫, as is justified by ∑𝑛 |𝜇(𝑛)| ∫𝑥/𝑛2

0 𝑑𝑢 ≤ ∑𝑛 𝑥/𝑛2 < ∞)

∫
𝑥

0
𝑀 (√𝑥

𝑢)𝑑𝑢 = ∫
𝑥

0
∑

𝑛≤√ 𝑥
𝑢

𝜇(𝑛)𝑑𝑢 = ∑
𝑛

𝜇(𝑛)∫
𝑥
𝑛2

0
𝑑𝑢 = 𝑥∑

𝑛

𝜇(𝑛)
𝑛2 = 𝑥

𝜁(2) .

Since our sums start from 1, the sum ∑𝑘≤𝐾 is empty for 𝐾 = 0.

Sublemma 8.2.2 (Mobius Lemma 2 - first step). For any 𝐾 ≤ 𝑥,

∑
𝑘≤𝑥

𝑀 (√𝑥
𝑘) = ∑

𝑘≤𝐾
𝑀 (√𝑥

𝑘) + ∑
𝐾<𝑘≤𝑥+1

∫
𝑘+ 1

2

𝑘− 1
2

𝑀 (√𝑥
𝑘)𝑑𝑢.

Proof. This is just splitting the sum at 𝐾.

Sublemma 8.2.3 (Mobius Lemma 2 - second step). For any 𝐾 ≤ 𝑥, for 𝑓(𝑢) = 𝑀(√𝑥/𝑢),

∑
𝐾<𝑘≤𝑥+1

∫
𝑘+ 1

2

𝑘− 1
2

𝑓(𝑢)𝑑𝑢 = ∫
⌊𝑥⌋+ 3

2

𝐾+ 1
2

𝑓(𝑢)𝑑𝑢 = ∫
𝑥

𝐾+ 1
2

𝑓(𝑢)𝑑𝑢,

Proof. This is just splitting the integral at 𝐾, since 𝑓(𝑢) = 𝑀(√𝑥/𝑢) = 0 for 𝑥 > 𝑢.
Lemma 8.2.2 (Mobius Lemma 2). For any 𝑥 > 0 and any integer 𝐾 ≥ 0,

𝑅(𝑥) = ∑
𝑘≤𝐾

𝑀 (√𝑥
𝑘) −∫

𝐾+ 1
2

0
𝑀 (√𝑥

𝑢)𝑑𝑢

− ∑
𝐾<𝑘≤𝑥+1

∫
𝑘+ 1

2

𝑘− 1
2

(𝑀 (√𝑥
𝑢) −𝑀 (√𝑥

𝑘))𝑑𝑢
(8.2)

Proof. We split into two cases. If 𝐾 > 𝑥, the second line of (8.2) is empty, and the first one
equals (8.1), by 𝑀(𝑡) = 0 for 𝑡 < 1, so (8.2) holds.

Now suppose that 𝐾 ≤ 𝑥. Then we combine Sublemma 8.2.2 and Sublemma 8.2.3 with
Lemma 8.2.1 to give the claim.

8.3 The estimates of Fiori, Kadiri, and Swidinsky
In this section we establish the primary results of Fiori, Kadiri, and Swidinsky [6].
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Theorem 8.3.1 (FKS Theorem 2.7). Let 𝐻0 denote a verification height for RH. Let
109/𝐻0 ≤ 𝑘 ≤ 1, 𝑡 > 0, 𝐻 ∈ [1002,𝐻0), 𝛼 > 0, 𝛿 ≥ 1, 𝜂0 = 0.23622, 1+ 𝜂0 ≤ 𝜇 ≤ 1+ 𝜂, and
𝜂 ∈ (𝜂0, 1/2) be fixed. Let 𝜎 > 1/2 + 𝑑/ log𝐻0. Then for any 𝑇 ≥ 𝐻0, one has

𝑁(𝜎, 𝑇 ) ≤ (𝑇−𝐻) log𝑇/(2𝜋𝑑)∗log(1+𝐶𝐶1(log(𝑘𝑇 ))2𝜎(log𝑇 )4(1−𝜎)𝑇 8/3(1−𝜎)/(𝑇−𝐻))+𝐶𝐶2∗log2 𝑇/2𝜋𝑑

and
𝑁(𝜎, 𝑇 ) ≤ 𝐶𝐶1

2𝜋𝑑 (log 𝑘𝑇 )2𝜎(log𝑇 )5−4∗𝜎𝑇 8/3(1−𝜎) +𝐶𝐶2 ∗ log2 𝑇/2𝜋𝑑
.

Proof.

Definition 8.3.1 (FKS Corollary 2.9). For each 𝜎1, 𝜎2, ̃𝑐1, ̃𝑐2 given in Table 8, we have
𝑁(𝜎, 𝑇 ) ≤ ̃𝑐1𝑇 𝑝(𝜎) log𝑞(𝜎) + ̃𝑐2 log2 𝑇 for 𝜎1 ≤ 𝜎 ≤ 𝜎2 with 𝑝(𝜎) = 8/3(1 − 𝜎) and 𝑞(𝜎) =
5 − 2𝜎.
Theorem 8.3.2 (FKS Lemma 2.1). If |𝑁(𝑇 ) − (𝑇/2𝜋 log(𝑇/2𝜋𝑒) + 7/8)| ≤ 𝑅(𝑇 ) then
∑𝑈≤𝛾<𝑉 1/𝛾 ≤ 𝐵1(𝑈, 𝑉 ).

Proof.

Theorem 8.3.3 (FKS Corollary 2.3). For each pair 𝑇0, 𝑆0 in Table 1 we have, for all 𝑉 > 𝑇0,
∑0<𝛾<𝑉 1/𝛾 < 𝑆0 +𝐵1(𝑇0, 𝑉 ).

Proof.

Theorem 8.3.4 (FKS Lemma 2.5). Let 𝑇0 ≥ 2 and 𝛾 > 0. Assume that there exist
𝑐1, 𝑐2, 𝑝, 𝑞, 𝑇0 for which one has a zero density bound. Assume 𝜎 ≥ 5/8 and 𝑇0 ≤ 𝑈 < 𝑉 .
Then 𝑠0(𝜎, 𝑈, 𝑉 ) ≤ 𝐵0(𝜎, 𝑈, 𝑉 ).
Proof.

Theorem 8.3.5 (FKS Remark 2-6-a). Γ(3, 𝑥) = (𝑥2 + 2(𝑥 + 1))𝑒−𝑥.

Proof.

Theorem 8.3.6 (FKS Remark 2-6-b). For 𝑠 > 1, one has Γ(𝑠, 𝑥) ∼ 𝑥𝑠−1𝑒−𝑥.

Proof.

Theorem 8.3.7 (FKS Theorem 3.1). Let 𝑥 > 𝑒50 and 50 < 𝑇 < 𝑥. Then 𝐸𝜓(𝑥) ≤
∑|𝛾|<𝑇 |𝑥𝜌−1/𝜌| + 2 log2 𝑥/𝑇 .

Proof.

Theorem 8.3.8 (FKS Theorem 3.2). For any 𝛼 ∈ (0, 1/2] and 𝜔 ∈ [0, 1] there exist 𝑀,𝑥𝑀
such that for max(51, log𝑥) < 𝑇 < (𝑥𝛼 − 2)/5 and some 𝑇 ∗ ∈ [𝑇 , 2.45𝑇 ],

|𝜓(𝑥) − (𝑥 − ∑
|𝛾|≤𝑇 ∗

𝑥𝜌/𝜌)| ≤ 𝑀𝑥/𝑇 ∗ 𝑙𝑜𝑔1−𝜔𝑥

for all 𝑥 ≥ 𝑥𝑀 .

Proof.
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Theorem 8.3.9 (FKS Proposition 3.4). Let 𝑥 > 𝑒50 and 3 log𝑥 < 𝑇 < √𝑥/3. Then
𝐸𝜓(𝑥) ≤ ∑|𝛾|<𝑇 |𝑥𝜌−1/𝜌| + 2 log2 𝑥/𝑇 .

Proof.

Theorem 8.3.10 (FKS Proposition 3.6). Let 𝜎1 ∈ (1/2, 1) and let (𝑇0, 𝑆0) be taken from
Table 1. Then Σ𝜎1

0 ≤ 2𝑥−1/2(𝑆0 +𝐵1(𝑇0, 𝑇 )) + (𝑥𝜎1−1
1 − 𝑥−1/2)𝐵1(𝐻0, 𝑇 ).

Proof.

Theorem 8.3.11 (FKS equation (3.13)). Σ𝑏
𝑎 = 2 ∗∑𝐻𝑎≤𝛾<𝑇;𝑎≤𝛽<𝑏

𝑥𝛽−1
𝛾 .

Proof.

Theorem 8.3.12 (FKS Remark 3.7). If 𝜎 < 1 − 1/𝑅 log𝐻0 then 𝐻𝜎 = 𝐻0.

Proof.

Theorem 8.3.13 (FKS Proposition 3.8). Let 𝑁 ≥ 2 be an integer. If 5/8 ≤ 𝜎1 < 𝜎2 ≤ 1,
𝑇 ≥ 𝐻0, then Σ𝜎2𝜎1 ≤ 2𝑥−(1−𝜎1)+(𝜎2−𝜎1/𝑁)𝐵0(𝜎1,𝐻𝜎1

, 𝑇 )+2𝑥(1−𝜎1)(1−𝑥−(𝜎2−𝜎1)/𝑁)∑𝑁−1
𝑛=1 𝐵0(𝜎(𝑛),𝐻(𝑛), 𝑇 )𝑥(𝜎2−𝜎1)(𝑛+1)/𝑁 .

Proof.

Theorem 8.3.14 (FKS Corollary 3.10). If 𝜎1 ≥ 0.9 then Σ𝜎2𝜎1 ≤ 0.00125994𝑥𝜎2−1.

Proof.

Theorem 8.3.15 (FKS Proposition 3.11). Let 5/8 < 𝜎2 ≤ 1, 𝑡0 = 𝑡0(𝜎2, 𝑥) = max(𝐻𝜎2
, exp(√log𝑥/𝑅))

and 𝑇 > 0. Let 𝐾 ≥ 2 and consider a strictly increasing sequence (𝑡𝑘)𝐾𝑘=0 such that 𝑡𝑘 = 𝑇 .
Then Σ1

𝜎2
≤ 2𝑁(𝜎2, 𝑇 )𝑥−1/𝑅 log 𝑡0/𝑡0 and Σ1

𝜎2
≤ 2((∑𝐾−1

𝑘=1 𝑁(𝜎2, 𝑡𝑘)(𝑥−1/𝑅 log 𝑡𝑘−1/𝑡𝑘−1 −
𝑥−1/(𝑅 log 𝑡𝑘)/𝑡𝑘)) + 𝑥−1/𝑅 log 𝑡𝐾−1/𝑡𝐾−1𝑁(𝜎2, 𝑇 )).
Proof.

Theorem 8.3.16 (FKS Corollary 3.12). Let 5/8 < 𝜎2 ≤ 1, 𝑡0 = 𝑡0(𝜎2, 𝑥) = max(𝐻𝜎2
, exp(√ log𝑥

𝑅 )),
𝑇 > 𝑡0. Let 𝐾 ≥ 2, 𝜆 = (𝑇/𝑡0)1/𝐾, and consider (𝑡𝑘)𝐾𝑘=0 the sequence given by 𝑡𝑘 = 𝑡0𝜆𝑘.
Then

Σ1
𝜎2

= 2 ∑
0<𝛾<𝑇
𝜎2≤𝛽<1

𝑥𝛽−1

𝛾 ≤ 𝜀4(𝑥, 𝜎2,𝐾, 𝑇 ),

where

𝜀4(𝑥, 𝜎2,𝐾, 𝑇 ) = 2
𝐾−1
∑
𝑘=1

𝑥− 1
𝑅 log𝑡𝑘

𝑡𝑘
( ̃𝑁(𝜎2, 𝑡𝑘+1) − ̃𝑁(𝜎2, 𝑡𝑘)) + 2 ̃𝑁(𝜎2, 𝑡1)

𝑥− 1
𝑅(log𝑡0)

𝑡0
,

and ̃𝑁(𝜎, 𝑇 ) satisfy (ZDB) 𝑁(𝜎, 𝑇 ) ≤ ̃𝑁(𝜎, 𝑇 ).
Proof.
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Theorem 8.3.17 (FKS Proposition 3-14). Fix 𝐾 ≥ 2 and 𝑐 > 1, and set 𝑡0, 𝑇 , and 𝜎2 as
functions of 𝑥 defined by

𝑡0 = 𝑡0(𝑥) = exp(√ log𝑥
𝑅 ) , 𝑇 = 𝑡𝑐0, and 𝜎2 = 1 − 2

𝑅 log 𝑡0
. (8.3)

Then, with 𝜀4(𝑥, 𝜎2,𝐾, 𝑇 ) as defined in (3.22), we have that as 𝑥 → ∞,

𝜀4(𝑥, 𝜎2,𝐾, 𝑇 ) = (1 + 𝑜(1))𝐶 (log 𝑡0)3+
4

𝑅 log𝑡0

𝑡20
, with 𝐶 = 2𝑐1𝑒

16𝑤1
3𝑅 𝑤3

1, and 𝑤1 = 1 + 𝑐 − 1
𝐾 ,
(8.4)

where 𝑐1 is an admissible value for (ZDB) on some interval [𝜎1, 1]. Moreover, both 𝜀4(𝑥, 𝜎2,𝐾, 𝑇 )
and 𝜀4(𝑥,𝜎2,𝐾,𝑇)𝑡20

(log 𝑡0)3 are decreasing in 𝑥 for 𝑥 > exp(𝑅𝑒2).

Proof.

Theorem 8.3.18 (FKS Theorem 1.1). For any 𝑥0 with log𝑥0 > 1000, and all 0.9 < 𝜎2 < 1,
2 ≤ 𝑐 ≤ 30, and 𝑁,𝐾 ≥ 1 the formula 𝜀(𝑥0) ∶= 𝜀(𝑥0, 𝜎2, 𝑐,𝑁,𝐾) as defined in (4.1) gives
an effectively computable bound

𝐸𝜓(𝑥) ≤ 𝜀(𝑥0) for all 𝑥 ≥ 𝑥0.

Proof.

Theorem 8.3.19 (FKS Theorem 1.1b). Moreover, a collection of values, 𝜀(𝑥0) computed
with well chosen parameters are provided in Table 5.

Proof.

Theorem 8.3.20 (FKS Lemma 5.2). For all 0 < log𝑥 ≤ 2100 we have that

𝐸𝜓(𝑥) ≤ 2(log𝑥)3/2 exp (−0.8476836√log𝑥) .

Proof.

Theorem 8.3.21 (FKS Lemma 5.3). For all 2100 < log𝑥 ≤ 200000 we have that

𝐸𝜓(𝑥) ≤ 9.22022(log𝑥)3/2 exp (−0.8476836√log𝑥) .

Proof.

Theorem 8.3.22 (FKS Theorem 1.2b). If log𝑥0 ≥ 1000 then we have an admissible bound
for 𝐸𝜓 with the indicated choice of 𝐴(𝑥0), 𝐵 = 3/2, 𝐶 = 2, and 𝑅 = 5.5666305.
Proof.

Theorem 8.3.23 (FKS1 Corollary 1.3). For all x > 2 we have𝐸𝜓(𝑥) ≤ 121.096(log𝑥/𝑅)3/2 exp(−2√log𝑥/𝑅)
with 𝑅 = 5.5666305.
Proof.

Theorem 8.3.24 (FKS1 Corollary 1.4). For all x > 2 we have𝐸𝜓(𝑥) ≤ 9.22022(log𝑥)3/2 exp(−0.8476836√log𝑥).
Proof. TODO.
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8.4 Summary of results
In this section we list some papers that we plan to incorporate into this section in the future,
and list some results that have not yet been moved into dedicated paper sections.

References to add:
None yet.
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Chapter 9

Secondary explicit estimates

9.1 Definitions
In this section we define the basic types of secondary estimates we will work with in the
project. Key references:

FKS1: Fiori–Kadiri–Swidninsky arXiv:2204.02588
FKS2: Fiori–Kadiri–Swidninsky arXiv:2206.12557

Definition 9.1.1 (pi). 𝜋(𝑥) is the number of primes less than or equal to 𝑥.
Definition 9.1.2 (li and Li). li(𝑥) = ∫𝑥

0
𝑑𝑡

log 𝑡 and Li(𝑥) = ∫𝑥
2

𝑑𝑡
log 𝑡 .

Definition 9.1.3 (theta). 𝜃(𝑥) = ∑𝑝≤𝑥 log 𝑝 where the sum is over primes 𝑝.

Definition 9.1.4 (Equation (1) of FKS2). 𝐸𝜋(𝑥) = |𝜋(𝑥) − Li(𝑥)|/Li(𝑥)
Definition 9.1.5 (Equation (2) of FKS2). 𝐸𝜃(𝑥) = |𝜃(𝑥) − 𝑥|/𝑥
Definition 9.1.6 (Definition 1, FKS2). We say that 𝐸𝜃 satisfies a classical bound with
parameters 𝐴,𝐵,𝐶,𝑅, 𝑥0 if for all 𝑥 ≥ 𝑥0 we have

𝐸𝜃(𝑥) ≤ 𝐴( log𝑥
𝑅 )

𝐵
exp(−𝐶 ( log𝑥

𝑅 )
1/2

).

Similarly for 𝐸𝜋.

Definition 9.1.7 (Definition 1, FKS2). We say that 𝐸𝜋 satisfies a classical bound with
parameters 𝐴,𝐵,𝐶,𝑅, 𝑥0 if for all 𝑥 ≥ 𝑥0 we have

𝐸𝜋(𝑥) ≤ 𝐴( log𝑥
𝑅 )

𝐵
exp(−𝐶 ( log𝑥

𝑅 )
1/2

).

9.2 The prime number bounds of Rosser and Schoenfeld
In this section we formalize the prime number bounds of Rosser and Schoenfeld [11].

Theorem 9.2.1 (A medium version of the prime number theorem). 𝜗(𝑥) = 𝑥+𝑂(𝑥/ log2 𝑥).
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Proof. This in principle follows by establishing an analogue of Theorem 5.0.1, using medi-
umPNT in place of weakPNT.

Definition 9.2.1 (Meissel-Mertens constant B). 𝐵 ∶= lim𝑥→∞ (∑𝑝≤𝑥
1
𝑝 − log log𝑥).

Definition 9.2.2 (Mertens constant E). 𝐸 ∶= lim𝑥→∞ (∑𝑝≤𝑥
log𝑝
𝑝 − log𝑥).

Sublemma 9.2.1 (The Chebyshev function is Stieltjes). The function 𝜗(𝑥) = ∑𝑝≤𝑥 log 𝑝
defines a Stieltjes function (monotone and right continuous).

Proof. Trivial

Sublemma 9.2.2 (RS-prime display before (4.13)). ∑𝑝≤𝑥 𝑓(𝑝) = ∫𝑥
2

𝑓(𝑦)
log𝑦 𝑑𝜗(𝑦).

Proof. This follows from the definition of the Stieltjes integral.

Sublemma 9.2.3 (RS equation (4.13)). ∑𝑝≤𝑥 𝑓(𝑝) =
𝑓(𝑥)𝜗(𝑥)

log𝑥 − ∫𝑥
2 𝜗(𝑥) 𝑑

𝑑𝑦 (
𝑓(𝑦)
log𝑦 ) 𝑑𝑦.

Proof. Follows from Sublemma 9.2.2 and integration by parts.

Sublemma 9.2.4 (RS equation (4.14)).

∑
𝑝≤𝑥

𝑓(𝑝) = ∫
𝑥

2

𝑓(𝑦) 𝑑𝑦
log 𝑦 + 2𝑓(2)

log 2

+𝑓(𝑥)(𝜗(𝑥) − 𝑥)
log𝑥 −∫

𝑥

2
(𝜗(𝑦) − 𝑦) 𝑑

𝑑𝑦
𝑑
𝑑𝑦 (

𝑓(𝑦)
log 𝑦 ) 𝑑𝑦.

Proof. Follows from Sublemma 9.2.3 and integration by parts.

Sublemma 9.2.5 (RS equation (4.16)).

𝐿𝑓 ∶= 2𝑓(2)
log 2 −∫

∞

2
(𝜗(𝑦) − 𝑦) 𝑑

𝑑𝑦 (
𝑓(𝑦)
log 𝑦 ) 𝑑𝑦.

Sublemma 9.2.6 (RS equation (4.15)).

∑
𝑝≤𝑥

𝑓(𝑝) = ∫
𝑥

2

𝑓(𝑦) 𝑑𝑦
log 𝑦 + 𝐿𝑓

+𝑓(𝑥)(𝜗(𝑥) − 𝑥)
log𝑥 +∫

∞

𝑥
(𝜗(𝑦) − 𝑦) 𝑑

𝑑𝑦
𝑑
𝑑𝑦 (

𝑓(𝑦)
log 𝑦 ) 𝑑𝑦.

Proof. Follows from Sublemma 9.2.4 and Definition 9.2.5.

Sublemma 9.2.7 (RS equation (4.17)).

𝜋(𝑥) = 𝜗(𝑥)
log𝑥 +∫

𝑥

2

𝜗(𝑦) 𝑑𝑦
𝑦 log2 𝑦

.

Proof. Follows from Sublemma 9.2.3 applied to 𝑓(𝑡) = 1.
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Sublemma 9.2.8 (RS equation (4.18)).

∑
𝑝≤𝑥

1
𝑝 = 𝜗(𝑥)

𝑥 log𝑥 +∫
𝑥

2

𝜗(𝑦)(1 + log 𝑦) 𝑑𝑦
𝑦2 log2 𝑦

.

Proof. Follows from Sublemma 9.2.3 applied to 𝑓(𝑡) = 1/𝑡.
Theorem 9.2.2 (RS equation (4.19) and Mertens’ second theorem).

∑
𝑝≤𝑥

1
𝑝 = log log𝑥 + 𝐵 + 𝜗(𝑥) − 𝑥

𝑥 log𝑥

−∫
𝑥

2

(𝜗(𝑦) − 𝑦)(1 + log 𝑦) 𝑑𝑦
𝑦2 log2 𝑦

.

Proof. Follows from Sublemma 9.2.3 applied to 𝑓(𝑡) = 1/𝑡. One can also use this identity
to demonstrate convergence of the limit defining 𝐵.

Theorem 9.2.3 (RS equation (4.19) and Mertens’ first theorem).

∑
𝑝≤𝑥

log 𝑝
𝑝 = log𝑥 + 𝐸 + 𝜗(𝑥) − 𝑥

𝑥

−∫
𝑥

2

(𝜗(𝑦) − 𝑦) 𝑑𝑦
𝑦2 .

Proof. Follows from Sublemma 9.2.3 applied to 𝑓(𝑡) = log 𝑡/𝑡. Convergence will need The-
orem 9.2.1.

9.3 Tools from BKLNW
In this file we record the results from [1]. -

9.4 The implications of FKS2
In this file we record the implications in the paper [7] that allow one to convert primary
bounds on 𝐸𝜓 into secondary bounds on 𝐸𝜋, 𝐸𝜃.

Remark 9.4.1 (Remark in FKS2 Section 1.1). li(𝑥) − Li(𝑥) = li(2).
Proof. This follows directly from the definitions of li and Li.

Definition 9.4.1 (g function, FKS2 (16)). For any 𝑎, 𝑏, 𝑐, 𝑥 ∈ R we define 𝑔(𝑎, 𝑏, 𝑐, 𝑥) ∶=
𝑥−𝑎(log𝑥)𝑏 exp(𝑐(log𝑥)1/2).
Sublemma 9.4.1 (FKS2 equation (17)). For any 2 ≤ 𝑥0 < 𝑥 one has

(𝜋(𝑥) − Li(𝑥)) − (𝜋(𝑥0) − Li(𝑥0)) =
𝜃(𝑥) − 𝑥
log𝑥 − 𝜃(𝑥0) − 𝑥0

log𝑥0
+∫

𝑥

𝑥0

𝜃(𝑡) − 𝑡
𝑡 log2 𝑡

𝑑𝑡.

Proof. This follows from Sublemma 9.2.7.
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Sublemma 9.4.2 (FKS2 Sublemma 10-1). We have

𝑑
𝑑𝑥𝑔(𝑎, 𝑏, 𝑐, 𝑥) = (−𝑎 log(𝑥) + 𝑏 + 𝑐

2√log(𝑥)) 𝑥−𝑎−1(log(𝑥))𝑏−1 exp(𝑐√log(𝑥)).

Proof. This follows from straightforward differentiation.

Sublemma 9.4.3 (FKS2 Sublemma 10-2). 𝑑
𝑑𝑥𝑔(𝑎, 𝑏, 𝑐, 𝑥) is negative when−𝑎𝑢2+ 𝑐

2𝑢+𝑏 < 0,
where 𝑢 = √log(𝑥).
Proof. Clear from previous sublemma.

Lemma 9.4.1 (FKS2 Lemma 10a). If 𝑎 > 0, 𝑐 > 0 and 𝑏 < −𝑐2/16𝑎, then 𝑔(𝑎, 𝑏, 𝑐, 𝑥)
decreases with 𝑥.
Proof. We apply Lemma 9.4.3. There are no roots when 𝑏 < − 𝑐2

16𝑎 , and the derivative is
always negative in this case.

Lemma 9.4.2 (FKS2 Lemma 10b). For any 𝑎 > 0, 𝑐 > 0 and 𝑏 ≥ −𝑐2/16𝑎, 𝑔(𝑎, 𝑏, 𝑐, 𝑥)
decreases with 𝑥 for 𝑥 > exp(( 𝑐

4𝑎 + 1
2𝑎√ 𝑐2

4 + 4𝑎𝑏)2).

Proof. We apply Lemma 9.4.3. If 𝑎 > 0, there are two real roots only if 𝑐2
4 + 4𝑎𝑏 ≥ 0 or

equivalently 𝑏 ≥ − 𝑐2
16𝑎 , and the derivative is negative for 𝑢 >

𝑐
2+√ 𝑐2

4 +4𝑎𝑏
2𝑎 .

Lemma 9.4.3 (FKS2 Lemma 10c). If 𝑐 > 0, 𝑔(0, 𝑏, 𝑐, 𝑥) decreases with 𝑥 for
√
log𝑥 >

−2𝑏/𝑐.
Proof. We apply Lemma 9.4.3. If 𝑎 = 0, it is negative when 𝑢 < −2𝑏

𝑐 .

Corollary 9.4.1 (FKS2 Corollary 11). If 𝐵 ≥ 1 + 𝐶2/16𝑅 then 𝑔(1, 1 − 𝐵,𝐶/
√
𝑅, 𝑥) is

decreasing in 𝑥.
Proof. This follows from Lemma 9.4.1 applied with 𝑎 = 1, 𝑏 = 1 − 𝐵 and 𝑐 = 𝐶/

√
𝑅.

Definition 9.4.2 (Dawson function, FKS2 (19)). The Dawson function 𝐷+ ∶ R → R is
defined by the formula 𝐷+(𝑥) ∶= 𝑒−𝑥2 ∫𝑥

0 𝑒𝑡2 𝑑𝑡.
Remark 9.4.2 (FKS2 remark after Corollary 11). The Dawson function has a single max-
imum at 𝑥 ≈ 0.942, after which the function is decreasing.

Proof. The Dawson function satisfies the differential equation 𝐹 ′(𝑥) + 2𝑥𝐹(𝑥) = 1 from
which it follows that the second derivative satisfies 𝐹″(𝑥) = −2𝐹(𝑥) − 2𝑥(−2𝑥𝐹(𝑥) + 1),
so that at every critical point (where we have 𝐹(𝑥) = 1

2𝑥 ) we have 𝐹″(𝑥) = − 1
𝑥 . It follows

that every positive critical value gives a local maximum, hence there is a unique such critical
value and the function decreases after it. Numerically one may verify this is near 0.9241 see
https://oeis.org/ A133841.

Lemma 9.4.4 (FKS2 Lemma 12). Suppose that 𝐸𝜃 satisfies an admissible classical bound
with parameters 𝐴,𝐵,𝐶,𝑅, 𝑥0. Then, for all 𝑥 ≥ 𝑥0,

∫
𝑥

𝑥0

|𝐸𝜃(𝑡)
log2 𝑡

𝑑𝑡| ≤ 2𝐴
𝑅𝐵𝑥𝑚(𝑥0, 𝑥) exp(−𝐶√ log𝑥

𝑅 )𝐷+(√log𝑥 − 𝐶
2
√
𝑅)

where
𝑚(𝑥0, 𝑥) = max((log𝑥0)(2𝐵−3)/2, (log𝑥)(2𝐵−3)/2).
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Proof. Since 𝜀𝜃,asymp(𝑡) provides an admissible bound on 𝜃(𝑡) for all 𝑡 ≥ 𝑥0, we have

∫
𝑥

𝑥0

∣ 𝜃(𝑡) − 𝑡
𝑡(log(𝑡))2 ∣ 𝑑𝑡 ≤ ∫

𝑥

𝑥0

𝜀𝜃,asymp(𝑡)
(log(𝑡))2 = 𝐴𝜃

𝑅𝐵 ∫
𝑥

𝑥0

(log(𝑡))𝐵−2 exp(−𝐶√ log(𝑡)
𝑅 )𝑑𝑡.

We perform the substitution 𝑢 = √log(𝑡) and note that 𝑢2𝐵−3 ≤ 𝑚(𝑥0, 𝑥) as defined in
(21). Thus the above is bounded above by

2𝐴𝜃𝑚(𝑥0, 𝑥)
𝑅𝐵 ∫

√log(𝑥)

√log(𝑥0)
exp(𝑢2 − 𝐶𝑢√

𝑅)𝑑𝑢.

Then, by completing the square 𝑢2 − 𝐶𝑢√
𝑅 = (𝑢 − 𝐶

2
√
𝑅)2 − 𝐶2

4𝑅 and doing the substitution
𝑣 = 𝑢 − 𝐶

2
√
𝑅 , the above becomes

2𝐴𝜃𝑚(𝑥0, 𝑥)
𝑅𝐵 exp(−𝐶2

4𝑅)∫
√log(𝑥)− 𝐶

2
√
𝑅

√log(𝑥0)− 𝐶
2
√
𝑅

exp(𝑣2) 𝑑𝑣.

Now we have

∫
√log(𝑥)− 𝐶

2
√
𝑅

√log(𝑥0)− 𝐶
2
√
𝑅

exp(𝑣2) 𝑑𝑣 ≤ ∫
√log(𝑥)− 𝐶

2
√
𝑅

0
exp(𝑣2) 𝑑𝑣

= 𝑥 exp(𝐶2

4𝑅) exp(−𝐶√ log(𝑥)
𝑅 )𝐷+ (√log(𝑥) − 𝐶

2
√
𝑅) .

Combining the above completes the proof.

Theorem 9.4.1 (FKS2 Proposition 13). Suppose that 𝐴𝜓, 𝐵, 𝐶,𝑅, 𝑥0 give an admissible
bound for 𝐸𝜓. If 𝐵 > 𝐶2/8𝑅, then 𝐴𝜃, 𝐵, 𝐶,𝑅, 𝑥0 give an admissible bound for 𝐸𝜃, where

𝐴𝜃 = 𝐴𝜓(1 + 𝜈𝑎𝑠𝑦𝑚𝑝(𝑥0))

with

𝜈𝑎𝑠𝑦𝑚𝑝(𝑥0) =
1
𝐴𝜓

( 𝑅
log𝑥0

)𝐵 exp(𝐶√ log𝑥0
𝑅 )(𝑎1(log𝑥0)𝑥−1/2

0 + 𝑎2(log𝑥0)𝑥−2/3
0 ).

Proof.

Theorem 9.4.2 (FKS2 Corollary 14). We have an admissible bound for 𝐸𝜃 with 𝐴 =
121.0961, 𝐵 = 3/2, 𝐶 = 2, 𝑅 = 5.5666305, 𝑥0 = 2.
Proof.

Definition 9.4.3 (mu asymptotic function, FKS2 (9)). For 𝑥0, 𝑥1 > 0, we define

𝑚𝑢𝑎𝑠𝑦𝑚𝑝(𝑥0, 𝑥1) ∶=
𝑥0 log(𝑥1)

𝜖𝜃,𝑎𝑠𝑦𝑚𝑝(𝑥1)𝑥1 log(𝑥0)
∣𝜋(𝑥0) − Li(𝑥0)

𝑥0/ log𝑥0
− 𝜃(𝑥0) − 𝑥0

𝑥0
∣+

2𝐷+(√log(𝑥1) − 𝐶
2
√
𝑅

√log𝑥1
.
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Definition 9.4.4 (FKS2 Definition 5). Let 𝑥0 > 2. We say a (step) function 𝜀⋄,𝑛𝑢𝑚(𝑥0)
gives an admissible numerical bound for 𝐸⋄(𝑥) if 𝐸⋄(𝑥) ≤ 𝜀⋄,𝑛𝑢𝑚(𝑥0) for all 𝑥 ≥ 𝑥0.

Theorem 9.4.3 (FKS2 Remark 7). If

𝑑
𝑑𝑥

log𝑥
𝑥 (𝐿𝑖(𝑥) − 𝑥

log𝑥 − 𝐿𝑖(𝑥1) +
𝑥1

log𝑥1
) |𝑥2

≥ 0

then 𝜇𝑛𝑢𝑚,1(𝑥0, 𝑥1, 𝑥2) < 𝜇𝑛𝑢𝑚,2(𝑥0, 𝑥1).
Proof.

Theorem 9.4.4 (FKS2 Remark 15). If log𝑥0 ≥ 1000 then we have an admissible bound
for 𝐸𝜃 with the indicated choice of 𝐴(𝑥0), 𝐵 = 3/2, 𝐶 = 2, and 𝑅 = 5.5666305.
Proof.

Theorem 9.4.5 (FKS2 Theorem 3). If 𝐵 ≥ max(3/2, 1 + 𝐶2/16𝑅), 𝑥0 > 0, and one has
an admissible asymptotic bound with parameters 𝐴,𝐵,𝐶, 𝑥0 for 𝐸𝜃, and

𝑥1 ≥ max(𝑥0, exp((1 + 𝐶
2
√
𝑅))2),

then
𝐸𝜋(𝑥) ≤ 𝜖𝜃,𝑎𝑠𝑦𝑚𝑝(𝑥1)(1 + 𝜇𝑎𝑠𝑦𝑚𝑝(𝑥0, 𝑥1))

for all 𝑥 ≥ 𝑥1. In other words, we have an admissible bound with parameters (1 +
𝜇𝑎𝑠𝑦𝑚𝑝(𝑥0, 𝑥1))𝐴,𝐵,𝐶, 𝑥1 for 𝐸𝜋.

Proof.

Theorem 9.4.6 (FKS2 Proposition 17). Let 𝑥 > 𝑥0 > 2. IF 𝐸𝜓(𝑥) ≤ 𝜀𝜓,𝑛𝑢𝑚(𝑥0), then

−𝜀𝜃,𝑛𝑢𝑚(𝑥0) ≤
𝜃(𝑥) − 𝑥

𝑥 ≤ 𝜀𝜓,𝑛𝑢𝑚(𝑥0) ≤ 𝜀𝜃,𝑛𝑢𝑚(𝑥0)

where

𝜀𝜃,𝑛𝑢𝑚(𝑥0) = 𝜀𝜓,𝑛𝑢𝑚(𝑥0)+ 1.00000002(𝑥−1/2
0 +𝑥−2/3

0 +𝑥−4/5
0 )+ 0.94(𝑥−3/4

0 +𝑥−5/6
0 +𝑥−9/10

0 )

Proof.

Theorem 9.4.7 (FKS2 Lemma 19). Let 𝑥1 > 𝑥0 ≥ 2, 𝑁 ∈ N, and let (𝑏𝑖)𝑁𝑖=1 be a finite
partition of [𝑥0, 𝑥1]. Then

|∫
𝑥1

𝑥0

𝜃(𝑡) − 𝑡
𝑡 log2 𝑡

𝑑𝑡| ≤
𝑁−1
∑
𝑖=1

𝜀𝜃,𝑛𝑢𝑚(𝑒𝑏𝑖)(𝐿𝑖(𝑒𝑏𝑖+1) − 𝐿𝑖(𝑒𝑏𝑖) + 𝑒𝑏𝑖
𝑏𝑖

− 𝑒𝑏𝑖+1

𝑏𝑖+1
).

Proof.

Theorem 9.4.8 (FKS2 Lemma 20). Assume 𝑥 ≥ 6.58. Then 𝐿𝑖(𝑥) − 𝑥
log𝑥 is strictly

increasing and 𝐿𝑖(𝑥) − 𝑥
log𝑥 > 𝑥−6.58

log2 𝑥 > 0.

Proof.
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Theorem 9.4.9 (FKS2 Theorem 6). Let 𝑥0 > 0 be chosen such that 𝜋(𝑥0) and 𝜃(𝑥0) are
computable, and let 𝑥1 ≥ max(𝑥0, 14). Let {𝑏𝑖}𝑁𝑖=1 be a finite partition of [log𝑥0, log𝑥1],
with 𝑏1 = log𝑥0 and 𝑏𝑁 = log𝑥1, and suppose that 𝜀𝜃,num gives computable admissible
numerical bounds for 𝑥 = exp(𝑏𝑖), for each 𝑖 = 1,… ,𝑁 . For 𝑥1 ≤ 𝑥2 ≤ 𝑥1 log𝑥1, we define

𝜇𝑛𝑢𝑚(𝑥0, 𝑥1, 𝑥2) =
𝑥0 log𝑥1

𝜀𝜃,𝑛𝑢𝑚(𝑥0)𝑥1 log𝑥0
∣𝜋(𝑥0) − Li(𝑥0)

𝑥0/ log𝑥0
− 𝜃(𝑥0) − 𝑥0

𝑥0
∣

+ log𝑥1
𝜀𝑡ℎ𝑒𝑡𝑎,𝑛𝑢𝑚(𝑥1)𝑥1

𝑁−1
∑
𝑖=1

𝜀𝜃,𝑛𝑢𝑚(exp(𝑏𝑖))(𝐿𝑖(𝑒𝑏𝑖+1) − 𝐿𝑖(𝑒𝑏𝑖) + 𝑒𝑏𝑖
𝑏𝑖

− 𝑒𝑏𝑖+1

𝑏𝑖+1
)

+ log𝑥2
𝑥2

(𝐿𝑖(𝑥2) −
𝑥2

log𝑥2
− 𝐿𝑖(𝑥1) +

𝑥1
log𝑥1

)

and for 𝑥2 > 𝑥1 log𝑥1, including the case 𝑥2 = ∞, we define

𝜇𝑛𝑢𝑚(𝑥0, 𝑥1, 𝑥2) =
𝑥0 log𝑥1

𝜀𝜃,𝑛𝑢𝑚(𝑥1)𝑥1 log𝑥0
∣𝜋(𝑥0) − Li(𝑥0)

𝑥0/ log𝑥0
− 𝜃(𝑥0) − 𝑥0

𝑥0
∣

+ log𝑥1
𝜀𝜃,𝑛𝑢𝑚(𝑥1)𝑥1

𝑁−1
∑
𝑖=1

𝜀𝜃,𝑛𝑢𝑚(exp(𝑏𝑖))(𝐿𝑖(𝑒𝑏𝑖+1) − 𝐿𝑖(𝑒𝑏𝑖) + 𝑒𝑏𝑖
𝑏𝑖

− 𝑒𝑏𝑖+1

𝑏𝑖+1
)

+ 1
log𝑥1 + log log𝑥1 − 1.

Then, for all 𝑥1 ≤ 𝑥 ≤ 𝑥2 we have

𝐸𝜋(𝑥) ≤ 𝜀𝜋,𝑛𝑢𝑚(𝑥1, 𝑥2) ∶= 𝜀𝜃,𝑛𝑢𝑚(𝑥1)(1 + 𝜇𝑛𝑢𝑚(𝑥0, 𝑥1, 𝑥2)).

Proof.

Theorem 9.4.10 (FKS2 Corollary 8). Let {𝑏′𝑖}𝑀𝑖=1 be a set of finite subdivisions of [log(𝑥1),∞),
with 𝑏′1 = log(𝑥1) and 𝑏′𝑀 = ∞. Define

𝜀𝜋,𝑛𝑢𝑚(𝑥1) ∶= max
1≤𝑖≤𝑀−1

𝜀𝜋,𝑛𝑢𝑚(exp(𝑏′𝑖), exp(𝑏′𝑖+1)).

Then 𝐸𝜋(𝑥) ≤ 𝜀𝜋,𝑛𝑢𝑚(𝑥1) for all 𝑥 ≥ 𝑥1.

Proof.

Theorem 9.4.11 (FKS2 Corollary 21). Let 𝐵 ≥ max( 32 , 1 + 𝐶2
16𝑅 ). Let 𝑥0, 𝑥1 > 0 with

𝑥1 ≥ max(𝑥0, exp((1+ 𝐶
2
√
𝑅 )2)). If 𝐸𝜓 satisfies an admissible classical bound with parameters

𝐴𝜓, 𝐵, 𝐶,𝑅, 𝑥0, then 𝐸𝜋 satisfies an admissible classical bound with 𝐴𝜋, 𝐵, 𝐶,𝑅, 𝑥1, where

𝐴𝜋 = (1 + 𝜈𝑎𝑠𝑦𝑚𝑝(𝑥0))(1 + 𝜇𝑎𝑠𝑦𝑚𝑝(𝑥0, 𝑥1))𝐴𝜓

for all 𝑥 ≥ 𝑥0, where

|𝐸𝜃(𝑥)| ≤ 𝜀𝜃,𝑎𝑠𝑦𝑚𝑝(𝑥) ∶= 𝐴(1 + 𝜇𝑎𝑠𝑦𝑚𝑝(𝑥0, 𝑥)) exp(−𝐶√ log𝑥
𝑅 )

where

𝜈𝑎𝑠𝑦𝑚𝑝(𝑥0) =
1
𝐴𝜓

( 𝑅
log𝑥0

)𝐵 exp(𝐶√ log𝑥0
𝑅 )(𝑎1(log𝑥0)𝑥−1/2

0 + 𝑎2(log𝑥0)𝑥−2/3
0 )

85



and

𝜇𝑎𝑠𝑦𝑚𝑝(𝑥0, 𝑥1) =
𝑥0 log𝑥1

𝜀𝜃,𝑎𝑠𝑦𝑚𝑝(𝑥1)𝑥1 log𝑥0
|𝐸𝜋(𝑥0) − 𝐸𝜃(𝑥0)| +

2𝐷+(
√
log𝑥 − 𝐶

2
√
𝑅 )

√log𝑥1
.

Proof.

Theorem 9.4.12 (FKS2 Corollary 22). One has

|𝜋(𝑥) − Li(𝑥)| ≤ 9.2211𝑥√log𝑥 exp(−0.8476√log𝑥)

for all 𝑥 ≥ 2.
Proof.

Theorem 9.4.13 (FKS2 Corollary 23). 𝐴𝜋, 𝐵, 𝐶, 𝑥0 as in Table 6 give an admissible asymp-
totic bound for 𝐸𝜋 with 𝑅 = 5.5666305.
Proof.

Theorem 9.4.14 (FKS2 Corollary 24). We have the bounds 𝐸𝜋(𝑥) ≤ 𝐵(𝑥), where 𝐵(𝑥) is
given by Table 7.

Proof.

Theorem 9.4.15 (FKS2 Corollary 26). One has

|𝜋(𝑥) − Li(𝑥)| ≤ 0.4298 𝑥
log𝑥

for all 𝑥 ≥ 2.
Proof.

9.5 Summary of results
Here we list some papers that we plan to incorporate into this section in the future, and list
some results that have not yet been moved into dedicated paper sections.

References to add:
Dusart: https://piyanit.nl/wp-content/uploads/2020/10/art_10.1007_s11139-016-9839-4.

pdf
PT: D. J. Platt and T. S. Trudgian, The error term in the prime number theorem, Math.

Comp. 90 (2021), no. 328, 871–881.
JY: D. R. Johnston, A. Yang, Some explicit estimates for the error term in the prime

number theorem, arXiv:2204.01980.

Theorem 9.5.1 (PT Corollary 2). One has

|𝜋(𝑥) − Li(𝑥)| ≤ 235𝑥(log𝑥)0.52 exp(−0.8√log𝑥)

for all 𝑥 ≥ exp(2000).
Proof.
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Theorem 9.5.2 (JY Corollary 1.3). One has

|𝜋(𝑥) − Li(𝑥)| ≤ 9.59𝑥(log𝑥)0.515 exp(−0.8274√log𝑥)

for all 𝑥 ≥ 2.
Proof.

Theorem 9.5.3 (JY Theorem 1.4). One has

|𝜋(𝑥) − Li(𝑥)| ≤ 0.028𝑥(log𝑥)0.801 exp(−0.1853 log3/5 𝑥/(log log𝑥)1/5))

for all 𝑥 ≥ 2.
Proof.

TODO: input other results from JY

Theorem 9.5.4 (Dusart Proposition 5.4). There exists a constant 𝑋0 (one may take 𝑋0 =
89693) with the following property: for every real 𝑥 ≥ 𝑋0, there exists a prime 𝑝 with

𝑥 < 𝑝 ≤ 𝑥(1 + 1
log3 𝑥

).

Proof.

TODO: input other results from Dusart
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Chapter 10

Tertiary explicit estimates

10.1 The least common multiple sequence is not highly
abundant for large 𝑛

10.1.1 Problem statement and notation
Definition 10.1.1. 𝜎(𝑛) is the sum of the divisors of 𝑛.
Definition 10.1.2. A positive integer 𝑁 is called highly abundant (HA) if

𝜎(𝑁) > 𝜎(𝑚)

for all positive integers 𝑚 < 𝑁 , where 𝜎(𝑛) denotes the sum of the positive divisors of 𝑛.
Informally, a highly abundant number has an unusually large sum of divisors.

Definition 10.1.3. For each integer 𝑛 ≥ 1, define

𝐿𝑛 ∶= lcm(1, 2,… , 𝑛).

We call (𝐿𝑛)𝑛≥1 the least common multiple sequence.

Clearly 𝐿𝑛 has a lot of divisors, and numerical experiments for small 𝑛 suggests that 𝐿𝑛
is often highly abundant. This leads to the following question:

Original MathOverflow question. Is it true that every value in the sequence
𝐿𝑛 = lcm(1, 2,… , 𝑛) is highly abundant? Equivalently,

{𝐿𝑛 ∶ 𝑛 ≥ 1} ⊆ 𝐻𝐴?

Somewhat surprisingly, the answer is no: not every 𝐿𝑛 is highly abundant.
It has previously been verified in Lean that 𝐿𝑛 is highly aboundant for 𝑛 ≤ 70, 81 ≤

𝑛 ≤ 96, 125 ≤ 𝑛 ≤ 148, 169 ≤ 𝑛 ≤ 172, and not highly abondant for all other 𝑛 ≤ 1010.
The arguments here establish the non-highly-abundance of 𝐿𝑛 for all 𝑛 ≥ 896832 sufficiently
large 𝑛, thus completing the determination in Lean of all 𝑛 for which 𝐿𝑛 is highly abundant.
This argument was taken from this MathOverflow answer.
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10.1.2 A general criterion using three medium primes and three
large primes

The key step in the proof is to show that, if one can find six primes 𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, 𝑞3 obeying
a certain inequality, then one can find a competitor 𝑀 < 𝐿𝑛 to 𝐿𝑛 with 𝜎(𝑀) > 𝜎(𝐿𝑛),
which will demonstrate that 𝐿𝑛 is not highly abundant. More precisely:

Definition 10.1.4. In the next few subsections we assume that 𝑛 ≥ 1 and that 𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, 𝑞3
are primes satisfiying √𝑛 < 𝑝1 < 𝑝2 < 𝑝3 < 𝑞1 < 𝑞2 < 𝑞3 < 𝑛
and the key criterion

3
∏
𝑖=1

(1 + 1
𝑞𝑖
) ≤ (

3
∏
𝑖=1

(1 + 1
𝑝𝑖(𝑝𝑖 + 1)))(1 + 3

8𝑛)(1 − 4𝑝1𝑝2𝑝3
𝑞1𝑞2𝑞3

). (10.1)

NOTE: In the Lean formalization of this argument, we index the primes from 0 to 2
rather than from 1 to 3.

Lemma 10.1.1. We have 4𝑝1𝑝2𝑝3 < 𝑞1𝑞2𝑞3.
Proof. Obvious from the non-negativity of the left-hand side of (10.1).

10.1.3 Factorisation of 𝐿𝑛 and construction of a competitor
Lemma 10.1.2 (Factorisation of 𝐿𝑛). There exists a positive integer 𝐿′ such that

𝐿𝑛 = 𝑞1𝑞2𝑞3 𝐿′

and each prime 𝑞𝑖 divides 𝐿𝑛 exactly once and does not divide 𝐿′.

Proof. Since 𝑞𝑖 < 𝑛, the prime 𝑞𝑖 divides 𝐿𝑛 exactly once (as 𝑞2𝑖 > 𝑛). Hence we may
write 𝐿𝑛 = 𝑞1𝑞2𝑞3𝐿′ where 𝐿′ is the quotient obtained by removing these prime factors. By
construction, 𝑞𝑖 ∤ 𝐿′ for each 𝑖.
Lemma 10.1.3 (Normalised divisor sum for 𝐿𝑛). Let 𝐿′ be as in Lemma 10.1.2. Then

𝜎(𝐿𝑛)
𝐿𝑛

= 𝜎(𝐿′)
𝐿′

3
∏
𝑖=1

(1 + 1
𝑞𝑖
). (10.2)

Proof. Use the multiplicativity of 𝜎(⋅) and the fact that each 𝑞𝑖 occurs to the first power in
𝐿𝑛. Then

𝜎(𝐿𝑛) = 𝜎(𝐿′)
3
∏
𝑖=1

𝜎(𝑞𝑖) = 𝜎(𝐿′)
3
∏
𝑖=1

(1 + 𝑞𝑖).

Dividing by 𝐿𝑛 = 𝐿′ ∏3
𝑖=1 𝑞𝑖 gives

𝜎(𝐿𝑛)
𝐿𝑛

= 𝜎(𝐿′)
𝐿′

3
∏
𝑖=1

1 + 𝑞𝑖
𝑞𝑖

= 𝜎(𝐿′)
𝐿′

3
∏
𝑖=1

(1 + 1
𝑞𝑖
).
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Lemma 10.1.4. There exist integers 𝑚 ≥ 0 and 𝑟 satisfying 0 < 𝑟 < 4𝑝1𝑝2𝑝3 and

𝑞1𝑞2𝑞3 = 4𝑝1𝑝2𝑝3𝑚+ 𝑟

Proof. This is division with remainder.

Definition 10.1.5. With 𝑚, 𝑟 as above, define the competitor

𝑀 ∶= 4𝑝1𝑝2𝑝3𝑚𝐿′.

Lemma 10.1.5 (Basic properties of 𝑀). With notation as above, we have:

1. 𝑀 < 𝐿𝑛.

2.
1 < 𝐿𝑛

𝑀 = (1 − 𝑟
𝑞1𝑞2𝑞3

)
−1

< (1 − 4𝑝1𝑝2𝑝3
𝑞1𝑞2𝑞3

)
−1

.

Proof. The first item is by construction of the division algorithm. For the second, note that

𝐿𝑛 = 𝑞1𝑞2𝑞3𝐿′ = (4𝑝1𝑝2𝑝3𝑚+ 𝑟)𝐿′ > 4𝑝1𝑝2𝑝3𝑚𝐿′ = 𝑀,

since 𝑟 > 0. For the third,

𝐿𝑛
𝑀 = 4𝑝1𝑝2𝑝3𝑚+ 𝑟

4𝑝1𝑝2𝑝3𝑚
= 1 + 𝑟

4𝑝1𝑝2𝑝3𝑚
= (1 − 𝑟

4𝑝1𝑝2𝑝3𝑚+ 𝑟)
−1

= (1 − 𝑟
𝑞1𝑞2𝑞3

)
−1

.

Since 0 < 𝑟 < 4𝑝1𝑝2𝑝3 and 4𝑝1𝑝2𝑝3 < 𝑞1𝑞2𝑞3, we have

0 < 𝑟
𝑞1𝑞2𝑞3

< 4𝑝1𝑝2𝑝3
𝑞1𝑞2𝑞3

,

so
(1 − 𝑟

𝑞1𝑞2𝑞3
)
−1

< (1 − 4𝑝1𝑝2𝑝3
𝑞1𝑞2𝑞3

)
−1

.

10.1.4 A sufficient condition
We give a sufficient condition for 𝜎(𝑀) ≥ 𝜎(𝐿𝑛).
Lemma 10.1.6 (A sufficient inequality). Suppose

𝜎(𝑀)
𝑀 (1 − 4𝑝1𝑝2𝑝3

𝑞1𝑞2𝑞3
) ≥ 𝜎(𝐿𝑛)

𝐿𝑛
.

Then 𝜎(𝑀) ≥ 𝜎(𝐿𝑛), and so 𝐿𝑛 is not highly abundant.

Proof. By Lemma 10.1.5,
𝐿𝑛
𝑀 < (1 − 4𝑝1𝑝2𝑝3

𝑞1𝑞2𝑞3
)
−1

.

Hence
𝜎(𝑀)
𝑀 ≥ 𝜎(𝐿𝑛)

𝐿𝑛
(1 − 4𝑝1𝑝2𝑝3

𝑞1𝑞2𝑞3
)
−1

> 𝜎(𝐿𝑛)
𝐿𝑛

⋅ 𝑀𝐿𝑛
.
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Multiplying both sides by 𝑀 gives

𝜎(𝑀) > 𝜎(𝐿𝑛) ⋅
𝑀
𝐿𝑛

and hence
𝜎(𝑀) ≥ 𝜎(𝐿𝑛),

since 𝑀/𝐿𝑛 < 1 and both sides are integers.

Combining Lemma 10.1.6 with Lemma 10.1.3, we see that it suffices to bound 𝜎(𝑀)/𝑀
from below in terms of 𝜎(𝐿′)/𝐿′:

Lemma 10.1.7 (Reduction to a lower bound for 𝜎(𝑀)/𝑀). If

𝜎(𝑀)
𝑀 ≥ 𝜎(𝐿′)

𝐿′ (
3
∏
𝑖=1

(1 + 1
𝑝𝑖(𝑝𝑖 + 1)))(1 + 3

8𝑛), (10.3)

then 𝐿𝑛 is not highly abundant.

Proof. Insert (10.3) and (10.2) into the desired inequality and compare with the assumed
bound (10.1); this is a straightforward rearrangement.

10.1.5 Conclusion of the criterion
Lemma 10.1.8 (Lower bound for 𝜎(𝑀)/𝑀). With notation as above,

𝜎(𝑀)
𝑀 ≥ 𝜎(𝐿′)

𝐿′ (
3
∏
𝑖=1

(1 + 1
𝑝𝑖(𝑝𝑖 + 1)))(1 + 3

8𝑛).

Proof. By multiplicativity, we have

𝜎(𝑀)
𝑀 = 𝜎(𝐿′)

𝐿′ ∏
𝑝

1 + 𝑝−1 +⋯+ 𝑝−𝜈𝑝(𝑀)

1 + 𝑝−1 +⋯+ 𝑝−𝜈𝑝(𝐿′) .

The contribution of 𝑝 = 𝑝𝑖 is
(1 + 𝑝−1

𝑖 + 𝑝−2
𝑖 )

1 + 𝑝−1
𝑖

= 1 + 1
𝑝𝑖(𝑝𝑖 + 1) .

The contribution of 𝑝 = 2 is
1 + 2−1 +⋯+ 2−𝑘−2

1 + 2−1 +⋯+ 2−𝑘 ,

where 𝑘 is the largest integer such that 2𝑘 ≤ 𝑛. A direct calculation yields

(1 + 2−1 +⋯+ 2−𝑘−2)
1 + 2−1 +⋯+ 2−𝑘 = 2𝑘+3 − 1

2𝑘+3 − 4 = 1 + 3
2𝑘+3 − 4,

Finally, since 2𝑘 ≤ 𝑛 < 2𝑘+1, we have 2𝑘+3 < 8𝑛, so
3

2𝑘+3 − 4 ≥ 3
8𝑛,

So the contribution from the prime 2 is at least 1 + 3/(8𝑛).
Finally, the contribution of all other primes is at least 1.
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We have thus completed the key step of demonstrating a sufficient criterion to establish
that 𝐿𝑛 is not highly abundant:

Theorem 10.1.1. Let 𝑛 ≥ 1. Suppose that primes 𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, 𝑞3 satisfy
√𝑛 < 𝑝1 < 𝑝2 < 𝑝3 < 𝑞1 < 𝑞2 < 𝑞3 < 𝑛

and the key criterion (10.1). Then 𝐿𝑛 is not highly abundant.

Proof. By Lemma 10.1.8, the condition (10.3) holds. By Lemma 10.1.7 this implies

𝜎(𝑀)
𝑀 (1 − 4𝑝1𝑝2𝑝3

𝑞1𝑞2𝑞3
) ≥ 𝜎(𝐿𝑛)

𝐿𝑛
.

Applying Lemma 10.1.6, we obtain 𝜎(𝑀) ≥ 𝜎(𝐿𝑛) with 𝑀 < 𝐿𝑛, so 𝐿𝑛 cannot be highly
abundant.

Remark 10.1.1. Analogous arguments allow other pairs (𝑐, 𝛼) in place of (4, 3/8), such as
(2, 1/4), (6, 17/36), (30, 0.632… ); or even (1, 0) provided more primes are used on the 𝑝-side
than the 𝑞-side to restore an asymptotic advantage.

10.1.6 Choice of six primes 𝑝𝑖, 𝑞𝑖 for large 𝑛
To finish the proof we need to locate six primes 𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, 𝑞3 obeying the required
inequality. Here we will rely on the prime number theorem of Dusart [5].

Lemma 10.1.9 (Choice of medium primes 𝑝𝑖). Let 𝑛 ≥ 𝑋2
0 . Set 𝑥 ∶= √𝑛. Then there exist

primes 𝑝1, 𝑝2, 𝑝3 with

𝑝𝑖 ≤ 𝑥(1 + 1
log3 𝑥

)
𝑖

and 𝑝1 < 𝑝2 < 𝑝3. Moreover,
√𝑛 < 𝑝1

Proof. Apply Theorem 9.5.4 successively with 𝑥, 𝑥(1 + 1/ log3 𝑥), 𝑥(1 + 1/ log3 𝑥)2, keeping
track of the resulting primes and bounds. For 𝑛 large and 𝑥 = √𝑛, we have √𝑛 < 𝑝1 as soon
as the first interval lies strictly above

√𝑛; this can be enforced by taking 𝑛 large enough.

Lemma 10.1.10 (Choice of large primes 𝑞𝑖). Let 𝑛 ≥ 𝑋2
0 . Then there exist primes 𝑞1 <

𝑞2 < 𝑞3 with

𝑞4−𝑖 ≥ 𝑛(1 + 1
log3

√𝑛
)
−𝑖

for 𝑖 = 1, 2, 3, and 𝑞1 < 𝑞2 < 𝑞3 < 𝑛.
Proof. Apply Theorem 9.5.4 with suitable values of 𝑥 slightly below 𝑛, e.g. 𝑥 = 𝑛(1 +
1/ log3 √𝑛)−𝑖, again keeping track of the intervals. For 𝑛 large enough, these intervals lie in
(√𝑛, 𝑛) and contain primes 𝑞𝑖 with the desired ordering.
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10.1.7 Bounding the factors in (10.1)
Lemma 10.1.11 (Bounds for the 𝑞𝑖-product). With 𝑝𝑖, 𝑞𝑖 as in Lemmas 10.1.9 and 10.1.10,
we have

3
∏
𝑖=1

(1 + 1
𝑞𝑖
) ≤

3
∏
𝑖=1

(1 +
(1 + 1

log3 √𝑛)
𝑖

𝑛 ). (10.4)

Proof. By Lemma 10.1.10, each 𝑞𝑖 is at least

𝑛(1 + 1
log3

√𝑛
)
−𝑗

for suitable indices 𝑗, so 1/𝑞𝑖 is bounded above by

(1 + 1
log3 √𝑛)

𝑖

𝑛
after reindexing. Multiplying the three inequalities gives (10.4).

Lemma 10.1.12 (Bounds for the 𝑝𝑖-product). With 𝑝𝑖 as in Lemma 10.1.9, we have for
large 𝑛

3
∏
𝑖=1

(1 + 1
𝑝𝑖(𝑝𝑖 + 1)) ≥

3
∏
𝑖=1

(1 + 1
(1 + 1

log3 √𝑛)
2𝑖(𝑛 + √𝑛)

). (10.5)

Proof. By Lemma 10.1.9, 𝑝𝑖 ≤
√𝑛(1 + 1/ log3 √𝑛)𝑖. Hence

𝑝2𝑖 ≤ 𝑛(1 + 1
log3 √𝑛)

2𝑖 and 𝑝𝑖 + 1 ≤ 𝑝𝑖(1 + 1/√𝑛) ≤ (1 + 1/√𝑛)𝑝𝑖.

From these one gets
𝑝𝑖(𝑝𝑖 + 1) ≤ (1 + 1

log3 √𝑛)
2𝑖(𝑛 + √𝑛),

and hence 1
𝑝𝑖(𝑝𝑖 + 1) ≥ 1

(1 + 1
log3 √𝑛)

2𝑖(𝑛 + √𝑛)
.

Taking 1 + ⋅ and multiplying over 𝑖 = 1, 2, 3 gives (10.5).

Lemma 10.1.13 (Lower bound for the product ratio 𝑝𝑖/𝑞𝑖). With 𝑝𝑖, 𝑞𝑖 as in Lemmas 10.1.9
and 10.1.10, we have

1 − 4𝑝1𝑝2𝑝3
𝑞1𝑞2𝑞3

≥ 1 −
4(1 + 1

log3 √𝑛)
12

𝑛3/2 . (10.6)

Proof. We have 𝑝𝑖 ≤
√𝑛(1 + 1/ log3 √𝑛)𝑖, so

𝑝1𝑝2𝑝3 ≤ 𝑛3/2(1 + 1
log3 √𝑛)

6.

Similarly, 𝑞𝑖 ≥ 𝑛(1 + 1/ log3 √𝑛)−𝑖, so

𝑞1𝑞2𝑞3 ≥ 𝑛3(1 + 1
log3 √𝑛)

−6.

93



Combining,

𝑝1𝑝2𝑝3
𝑞1𝑞2𝑞3

≤
𝑛3/2(1 + 1

log3 √𝑛)
6

𝑛3(1 + 1
log3 √𝑛)

−6 =
(1 + 1

log3 √𝑛)
12

𝑛3/2 .

This implies (10.6).

10.1.8 Reduction to a small epsilon-inequality
Lemma 10.1.14 (Uniform bounds for large 𝑛). For all 𝑛 ≥ 𝑋2

0 = 896932 we have

1
log3

√𝑛
≤ 0.000675, 1

𝑛3/2 ≤ 1
89693 ⋅ 1𝑛.

and 1
𝑛 +√𝑛 ≥ 1

1 + 1/89693 ⋅ 1𝑛.

Proof. This is a straightforward calculus and monotonicity check: the left-hand sides are
decreasing in 𝑛 for 𝑛 ≥ 𝑋2

0 , and equality (or the claimed upper bound) holds at 𝑛 = 𝑋2
0 .

One can verify numerically or symbolically.

Lemma 10.1.15 (Polynomial approximation of the inequality). For 0 ≤ 𝜀 ≤ 1/896932, we
have

3
∏
𝑖=1

(1 + 1.000675𝑖𝜀) ≤ (1 + 3.01𝜀 + 3.01𝜀2 + 1.01𝜀3),

and
3
∏
𝑖=1

(1 + 𝜀
1.0006752𝑖

1
1 + 1/89693)(1 + 3

8𝜀)(1 − 4 × 1.00067512
89693 𝜀) ≥ 1 + 3.36683𝜀 − 0.01𝜀2.

Proof. Expand each finite product as a polynomial in 𝜀, estimate the coefficients using the
bounds in Lemma 10.1.14, and bound the tails by simple inequalities such as

(1 + 𝐶𝜀)𝑘 ≤ 1 + 𝑘𝐶𝜀 +…

for small 𝜀. All coefficients can be bounded numerically in a rigorous way; this step is a
finite computation that can be checked mechanically.

Lemma 10.1.16 (Final polynomial comparison). For 0 ≤ 𝜀 ≤ 1/896932, we have

1 + 3.01𝜀 + 3.01𝜀2 + 1.01𝜀3 ≤ 1 + 3.36683𝜀 − 0.01𝜀2.

Proof. This is equivalent to

3.01𝜀 + 3.01𝜀2 + 1.01𝜀3 ≤ 3.36683𝜀 − 0.01𝜀2,

or
0 ≤ (3.36683 − 3.01)𝜀 − (3.01 + 0.01)𝜀2 − 1.01𝜀3.

Factor out 𝜀 and use that 0 < 𝜀 ≤ 1/896932 to check that the resulting quadratic in 𝜀
is nonnegative on this interval. Again, this is a finite computation that can be verified
mechanically.
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Proposition 10.1.1 (Verification of (10.1) for large 𝑛). For every integer 𝑛 ≥ 𝑋2
0 =

896932 ≈ 8.04 × 109, the primes 𝑝𝑖, 𝑞𝑖 constructed in Lemmas 10.1.9 and 10.1.10 satisfy the
inequality (10.1).

Proof. Combine Lemma 10.1.11, Lemma 10.1.12, and Lemma 10.1.13. Then apply Lemma 10.1.14
and set 𝜀 = 1/𝑛. The products are bounded by the expressions in Lemma 10.1.15, and the
inequality in Lemma 10.1.16 then ensures that (10.1) holds.

10.1.9 Conclusion for large 𝑛
Theorem 10.1.2 (Non-highly abundant for large 𝑛). For every integer 𝑛 ≥ 896932, the
integer 𝐿𝑛 is not highly abundant.

Proof. By Proposition 10.1.1, there exist primes 𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, 𝑞3 satisfying the hypotheses
of Theorem 10.1.1. Hence 𝐿𝑛 is not highly abundant.

10.2 Erdos problem 392
The proof here is adapted from https://www.erdosproblems.com/forum/thread/392#
post-2696 which in turn is inspired by the arguments in https://arxiv.org/abs/2503.
20170.

Definition 10.2.1. We work with (approximate) factorizations 𝑎1 …𝑎𝑡 of a factorial 𝑛!.
Definition 10.2.2. The waste of a factorizations 𝑎1 …𝑎𝑡 is defined as ∑𝑖 log(𝑛/𝑎𝑖).
Definition 10.2.3. The balance of a factorization 𝑎1 …𝑎𝑡 at a prime 𝑝 is defined as the
number of times 𝑝 divides 𝑎1 …𝑎𝑡, minus the number of times 𝑝 divides 𝑛!.
Lemma 10.2.1. If a factorization has zero total imbalance, then it exactly factors 𝑛!.
Proof.

Lemma 10.2.2. The waste of a factorization is equal to 𝑡 log𝑛 − log𝑛!, where 𝑡 is the
number of elements.

Proof.

Definition 10.2.4. The score of a factorization (relative to a cutoff parameter 𝐿) is equal
to its waste, plus log 𝑝 for every surplus prime 𝑝, log(𝑛/𝑝) for every deficit prime above 𝐿,
log𝐿 for every deficit prime below 𝐿 and an additional log𝑛 if one is not in total balance.

Lemma 10.2.3. If one is in total balance, then the score is equal to the waste.

Proof.

Sublemma 10.2.1. If there is a prime 𝑝 in surplus, one can remove it without increasing
the score.

Proof. Locate a factor 𝑎𝑖 that contains the surplus prime 𝑝, then replace 𝑎𝑖 with 𝑎𝑖/𝑝.
Sublemma 10.2.2. If there is a prime 𝑝 in deficit larger than 𝐿, one can remove it without
increasing the score.

Proof. Add an additional factor of 𝑝 to the factorization.
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Sublemma 10.2.3. If there is a prime 𝑝 in deficit less than 𝐿, one can remove it without
increasing the score.

Proof. Without loss of generality we may assume that one is not in the previous two situ-
ations, i.e., wlog there are no surplus primes and all primes in deficit are at most 𝐿. If all
deficit primes multiply to 𝑛 or less, add that product to the factorization (this increases the
waste by at most log𝑛, but we save a log𝑛 from now being in balance). Otherwise, greedily
multiply all primes together while staying below 𝑛 until one cannot do so any further; add
this product to the factorization, increasing the waste by at most log𝐿.
Lemma 10.2.4. One can bring any factorization into balance without increasing the score.

Proof. Apply strong induction on the total imbalance of the factorization and use the pre-
vious three sublemmas.

Proposition 10.2.1. Starting from any factorization 𝑓 , one can find a factorization 𝑓 ′ in
balance whose cardinality is at most log𝑛! plus the score of 𝑓 , divided by log𝑛.
Proof. Combine Lemma 10.2.4, Lemma 10.2.3, and Lemma 10.2.2.

Definition 10.2.5. Now let 𝑀,𝐿 be additional parameters with 𝑛 > 𝐿2; we also need the
minor variant ⌊𝑛/𝐿⌋ > √𝑛.
Definition 10.2.6. We perform an initial factorization by taking the natural numbers
between 𝑛 − 𝑛/𝑀 (inclusive) and 𝑛 (exclusive) repeated 𝑀 times, deleting those elements
that are not 𝑛/𝐿-smooth (i.e., have a prime factor greater than or equal to 𝑛/𝐿).
Sublemma 10.2.4. The number of elements in this initial factorization is at most 𝑛.
Proof.

Lemma 10.2.5. The total waste in this initial factorization is at most 𝑛 log 1
1−1/𝑀 .

Proof.

Sublemma 10.2.5. A large prime 𝑝 ≥ 𝑛/𝐿 cannot be in surplus.

Proof. No such prime can be present in the factorization.

Sublemma 10.2.6. A large prime 𝑝 ≥ 𝑛/𝐿 can be in deficit by at most 𝑛/𝑝.
Proof. This is the number of times 𝑝 can divide 𝑛!.
Sublemma 10.2.7. A medium prime

√𝑛 < 𝑝 ≤ 𝑛/𝐿 can be in surplus by at most 𝑀 .

Proof. Routine computation using Legendre’s formula.

Sublemma 10.2.8. A medium prime
√𝑛 < 𝑝 ≤ 𝑛/𝐿 can be in deficit by at most 𝑀 .

Proof. The number of times 𝑝 divides 𝑎1 …𝑎𝑡 is at least 𝑀⌊𝑛/𝑀𝑝⌋ ≥ 𝑛/𝑝 − 𝑀 (note that
the removal of the non-smooth numbers does not remove any multiples of 𝑝). Meanwhile,
the number of times 𝑝 divides 𝑛! is at most 𝑛/𝑝.
Sublemma 10.2.9. A small prime 𝑝 ≤ √𝑛 can be in surplus by at most 𝑀 log𝑛.
Proof. Routine computation using Legendre’s formula, noting that at most log𝑛/ log 2 pow-
ers of 𝑝 divide any given number up to 𝑛.
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Sublemma 10.2.10. A small prime 𝐿 < 𝑝 ≤ √𝑛 can be in deficit by at most 𝑀 log𝑛.
Proof. Routine computation using Legendre’s formula, noting that at most log𝑛/ log 2 pow-
ers of 𝑝 divide any given number up to 𝑛.
Sublemma 10.2.11. A tiny prime 𝑝 ≤ 𝐿 can be in deficit by at most 𝑀 log𝑛 +𝑀𝐿𝜋(𝑛).
Proof. In addition to the Legendre calculations, one potentially removes factors of the form
𝑝𝑙𝑞 with 𝑙 ≤ 𝐿 and 𝑞 ≤ 𝑛 a prime up to 𝑀 times each, with at most 𝐿 copies of 𝑝 removed
at each factor.

Proposition 10.2.2. The initial score is bounded by

𝑛 log(1−1/𝑀)−1+ ∑
𝑝≤𝑛/𝐿

𝑀 log𝑛+ ∑
𝑝≤√𝑛

𝑀 log2 𝑛/ log 2+ ∑
𝑛/𝐿<𝑝≤𝑛

𝑛
𝑝 log 𝑛

𝑝+∑
𝑝≤𝐿

(𝑀 log𝑛+𝑀𝐿𝜋(𝑛)) log𝐿.

Proof. Combine Lemma 10.2.5, Sublemma 10.2.5, Sublemma 10.2.6, Sublemma 10.2.7, Sub-
lemma 10.2.8, Sublemma 10.2.9, Sublemma 10.2.10, and Sublemma 10.2.11, and combine
log 𝑝 and log(𝑛/𝑝) to log𝑛.
Sublemma 10.2.12. If 𝑀 is sufficiently large depending on 𝜀, then 𝑛 log(1−1/𝑀)−1 ≤ 𝜀𝑛.
Proof. Use the fact that log(1 − 1/𝑀)−1 goes to zero as 𝑀 → ∞.

Sublemma 10.2.13. If 𝐿 is sufficiently large depending on 𝑀, 𝜀, and 𝑛 sufficiently large
depending on 𝐿, then ∑𝑝≤𝑛/𝐿 𝑀 log𝑛 ≤ 𝜀𝑛.

Proof. Use the prime number theorem (or the Chebyshev bound).

Sublemma 10.2.14. If 𝑛 sufficiently large depending on𝑀, 𝜀, then∑𝑝≤√𝑛 𝑀 log2 𝑛/ log 2 ≤
𝜀𝑛.
Proof. Crude estimation.

Lemma 10.2.6.
𝜋(𝑛) = 𝑜(𝑛) as 𝑛 → ∞.

Proof. Given 𝜀 > 0, choose 𝑎 ≠ 0 with 𝜑(𝑎)/𝑎 < 𝜀/2 (using ∏𝑝≤𝑛(1 − 1/𝑝) → 0). For
𝑛 ≥ 𝑎 + 2,

𝜋(𝑛) ≤ 𝜑(𝑎)
𝑎 ⋅ 𝑛 + 𝜑(𝑎) + 𝜋(𝑎 + 1) + 1.

Since 𝜑(𝑎)/𝑎 < 𝜀/2, for 𝑛 large enough the constant terms are absorbed, giving 𝜋(𝑛) <
𝜀𝑛.
Sublemma 10.2.15. If 𝑛 sufficiently large depending on 𝐿, 𝜀, then ∑𝑛/𝐿<𝑝≤𝑛

𝑛
𝑝 log 𝑛

𝑝 ≤ 𝜀𝑛.

Proof. Bound 𝑛
𝑝 by 𝐿 and use the prime number theorem (or the Chebyshev bound).

Sublemma 10.2.16. For all 𝑛 ≥ 2, one has

𝜋(𝑛) ≤ √𝑛 + 2𝑛 log 4
log𝑛 .
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Proof. By Chebyshev’s bound, ∏𝑝≤𝑛 𝑝 ≤ 4𝑛, so ∑𝑝≤𝑛 log 𝑝 ≤ 𝑛 log 4. The number of primes
𝑝 ≤ √𝑛 is trivially at most

√𝑛. For primes 𝑝 > √𝑛, we have log 𝑝 > 1
2 log𝑛, hence

(𝜋(𝑛) − 𝜋(√𝑛)) ⋅ 1
2 log𝑛 < ∑

√𝑛<𝑝≤𝑛
log 𝑝 ≤ 𝑛 log 4,

giving 𝜋(𝑛) − 𝜋(√𝑛) < 2𝑛 log4
log𝑛 . Adding 𝜋(√𝑛) ≤ √𝑛 yields the result.

Sublemma 10.2.17. If 𝑛 sufficiently large depending on 𝑀,𝐿, 𝜀, then ∑𝑝≤𝐿(𝑀 log𝑛 +
𝑀𝐿𝜋(𝑛)) log𝐿 ≤ 𝜀𝑛.
Proof. Use the prime number theorem (or the Chebyshev bound).

Proposition 10.2.3. The score of the initial factorization can be taken to be 𝑜(𝑛).
Proof. Pick 𝑀 large depending on 𝜀, then 𝐿 sufficiently large depending on 𝑀, 𝜀, then 𝑛
sufficiently large depending on 𝑀,𝐿, 𝜀, so that the bounds in Sublemma 10.2.12, Sublemma
10.2.13, Sublemma 10.2.14, Sublemma 10.2.15, and Sublemma 10.2.17 each contribute at
most (𝜀/5)𝑛. Then use Proposition 10.2.2.

Theorem 10.2.1. One can find a balanced factorization of 𝑛! with cardinality at least
𝑛 − 𝑛/ log𝑛 − 𝑜(𝑛/ log𝑛).-
Proof. Combine Proposition 10.2.3 with Proposition 10.2.1 and the Stirling approximation.

Theorem 10.2.2. One can find a factor 𝑛! into at least 𝑛/2−𝑛/2 log𝑛−𝑜(𝑛/ log𝑛) numbers
of size at most 𝑛2.-

Proof. Group the factorization arising in Theorem 10.2.1 into pairs, using Lemma 10.2.1.
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