Structures

e Main reference: The Lean Language Reference, in particular § 4.4.2.

The usual way to define a structure is to write its name, then where (or : =, but this syntax

has been deprecated) and then the list of fields that we want a term of the structure to be made
of

structure MyStructure where
firstfield : firstType
secondfield : secondType

lastfield : lastType
where each field is a term in some known type. Every field can depend upon the previous ones.

e Often, some nthType is in Prop, so nthfield : nthType is a proofthat the
corresponding condition is satisfied.

Declaring a structure as above automatically creates several terms:

1. Aterm MyStructure.mk : firstType -» secondType -» ... - lastType -
MyStructure to construct terms..

2. Aterm MyStructure.nthfield : MyStructure - nthType: this projects a term
of type MyStructure onto its nth field.

3. If the attribute @[ext] is prepended on the line before the declaration, a theorem
MyStructure.ext is created, of type

V {x y : MyStructure}, x.firstfield = y.firstfield » ... »
X.lastfield = y.lastfield » x =y

saying that if all fields of two terms coincide, the terms themselves coincide.
e IfnthType = Prop, the arrow x.(n-1)stfield = y.(n-1)stfield -
x.nthfield = y.nthfield is skipped thanks to proof irrelevance. Another theorem

MyStructure.ext_iff is also added, that adds the reverse implication.

+++ Useful calls The call whatsnew 1in on the line preceeding the structure makes Lean
shows all newly created declarations.

The call #print MyStructure has Lean print all fields, parameters and constructors. +++
Examples

We will

. Look again at Antoine’s QuadraticAlgabra; and then define

. a structure HasZero, that simply endows a type with a “zero” element (you can think of it
as a pointed type);

. a structure Magma that endows a type with a binary operation.

4. a structure Monoid that is a Magma with a Zero that behaves like a @ and where + is

associative: this will use the extend construction.

N —

W

8

Constructing terms

Let’s try to buid some terms of the above structures. This can mean

o cither building an explicit term of some explicit type that is a structure; or
e showing that an existing type has the (mathematical) structure implemented by our
structure.

When doing so, VSCode comes at rescue: once we declare that we are looking for a term in a
structure MyStructure (i. e. in an inductive type with one constructor, itself a function with
several arguments), we can type

def MyTerm : MyStructure :=

(beware that the underscore _ must not be indented), and a (blue) bulb | appears. Click on it
to generate a skeleton of the structure at hand, so you do not need to remember all fields by
heart.

Either using . or not, there are three ways to define a term of a structure:
l.myTerm : MyStructure :=, followed either by

o by constructor and then you’re in tactic mode; or
o {firstfield := firstterm, secondfield := secondterm, ...,
lastfield := lastterm}.

2.myTerm : MyStructure where and then the list nthfield := nthterm, each one a
new (indented) line (observe that the | -action replaces : = with where automatically).

3. Using the so-called anonymous constructor provided by (and): just insert the list of terms
(firstterm, secondterm, ..., lastterm)aftermyTerm : MyStructure :=
and Lean will understand.

Classes

Although this “seems to work™ there are some points that are blatantly unsatisfactory:

1. We don’t have a notation T that works nicely, we need to write (NatMagma t) 3 2

2. Although it is ok to be able to define arbitrary crazy additive structures on N, we’d like to
record that there is a prefered one, whose name we can forget and that Lean remembers.

3. We would like things to chain automatically: we’ve defined a topological space on every
space with metric, and we could define a metric on every product of metric spaces: but we
don’t get automatically a topology on X x VY...

Type classes are the solution (in Lean, other proof assistants, like Rocq, take a different
approach).

The idea is to build a database of terms of structures (like NatMonoid : Monoid N or
RealMetric : SpaceWithMetric R) that can be searched by Lean each time that it looks
for some property or some operation on a type

This will also enable more flexible notation: if Lean will see 3 t 2 it will

1. Understand T as the function ?a - ?a -» ?dacoming fromaterm ?t : Magma ?a
(where both ?a and ?t are still to be determined)

2. Realise that 2 and 3 are terms of type N, so ?a = N

3. It follows that ?t must be a term of type Magma N

4. Looking in the database, it will find the term NatMagma : Magma N and it will
understand what T in this context mean.

Before moving to the examples, observe that with all good news there are also drawbacks: if
we’ve not been careful enough and we’ve recorded both NatMagma and NatMagma' as terms
in Magma N, Lean will find both of them in the database and will (basically) randomly pick
one or the other.

3

