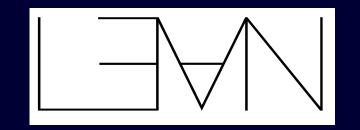


### Alex Kontorovich

**RUTGERS UNIVERSITY / IAS** 



#### Workshop on





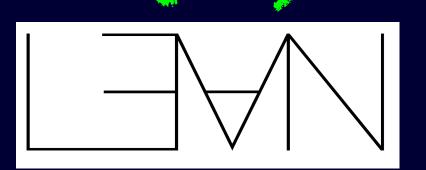








PNT proved 4/8/24



- Not exactly "Research"
- Not exactly "Teaching"
- Hopefully eventually will be done in a good enough way to go into Mathlib; not currently

## $\mathsf{PNT}$

- PNT+ co-organized with Terry Tao
- Goal: Fermat will need Chebotarev Density Theorem. Special case of that is Dirichlet's theorem (primes in progressions). Didn't even have Prime Number Theorem in Mathlib. So let's get to work!
- Note: PNT has been formalized before, many times in fact.
- 2005: Avigad et al in Isabelle (Erdos-Selberg method);
- 2009: Harrison in HOL-light (Newman's proof);
- 2016: Carniero in Metamath (Erdos-Selberg);
- 2018: Eberl-Paulson in Isabelle (Newman)
- We will want to do in it a way that extends to much more general settings.
- Organizational infrastructure: Github + Blueprint + Zulip

- Organizational infrastructure: Github + Blueprint + Zulip
- Original project comprised three attacks:
  - (Weak) using "Fourier" methods, Wiener-Ikehara Tauberian theorem. Work of Michael Stoll already reduced PNT to this. (Done!)
  - (Medium) developing Mellin transform API (David Loeffler), pulling infinite vertical contours past poles, picking up residues. And
  - (Strong) Getting a "classical" error savings of  $\exp(c(\log x)^{1/2})$  using Hadamard factorization (or local versions)
  - Meanwhile, Shuhao Song+Bowen Yao formalized (Strong) in Isabelle!
    - Posted mid-March '24 (?); paper says formalization took one month
    - Built on top of much bigger Complex Analysis library...

- These were all a great excuse to get more analysis into Mathlib
- We didn't have Fourier inversion (now we do, Sebastian Gouzel)
- We didn't have that Fourier transform of Schwartz function is Schwartz, now we do (Gouzel + K-Loeffler-Macbeth + Beffara)
- We were also missing one of the least developed late undergrad / early grad areas of Mathlib (needed for lots of analytic number theory), namely: Complex Analysis

• Big Idea: Can do all the Complex Analysis we need just using Rectangles!

## $\mathsf{PNT}$

- Big Idea: Can do all the Complex Analysis we need just using Rectangles!
  - We have Green's Theorem in Mathlib (Yury Kudryashov), so the integral of a holomorphic function over a rectangle is zero.

```
/-%
\begin{definition}\label{Rectangle}\lean{Rectangle}\leanok
A Rectangle has corners $z$ and $w \in \C$.
\end{definition}
%-/
/-- A `Rectangle` has corners `z` and `w`. -/
def Rectangle (z w : C) : Set C := [[z.re, w.re]] xC [[z.im, w.im]]
```



```
noncomputable def RectangleIntegral \{E: Type \ u\_1\} \ [NormedAddCommGroup \ E] \ [NormedSpace \ C \ E] \ (f: C \to E) (z w : C) :
```

• We have Green's Theorem in Mathlib (Yury Kudryashov), so the integral of a holomorphic function over a rectangle is zero.

```
noncomputable def RectangleIntegral
         \{E : Type u_1\} [NormedAddCommGroup E] [NormedSpace \mathbb{C} E] (f : \mathbb{C} \to \mathbb{E})
         (z w : \mathbb{C}) :
                      RectangleIntegral f z w = HIntegral f z.re w.re z.im -
                      HIntegral f z.re w.re w.im + VIntegral f w.re z.im w.im -
                      VIntegral f z.re z.im w.im
                       HIntegral f x_1 x_2 y = \int (x : \mathbb{R}) in x_1...x_2, f (\uparrow x + \uparrow y * Complex.I)
                  theorem HolomorphicOn.vanishesOnRectangle
                           \{E : Type u_1\} [NormedAddCommGroup E] [NormedSpace <math>C E] \{f : C \rightarrow E\}
                           \{z \ w : \emptyset\} [CompleteSpace E] \{U : Set \ \emptyset\} (f_holo : HolomorphicOn f U)
                           (hU : z.Rectangle w \subseteq U) :
                      RectangleIntegral f z w = 0
```

 We have Green's Theorem in Mathlib (Yury Kudryashov), so the integral of a holomorphic function over a rectangle is zero.

```
theorem HolomorphicOn.vanishesOnRectangle  \{E: Type \ u\_1\} \ [NormedAddCommGroup \ E] \ [NormedSpace \ C \ E] \ \{f: \ C \to E\}   \{z \ w : \ C\} \ [CompleteSpace \ E] \ \{U: Set \ C\} \ (f\_holo : HolomorphicOn \ f \ U)   (hU: z.Rectangle \ w \subseteq U):   RectangleIntegral \ f \ z \ w = 0
```

```
theorem ResidueTheoremOnRectangleWithSimplePole
    {f g : C → C} {z w p A : C} (zRe_le_wRe : z.re ≤ w.re)
    (zIm_le_wIm : z.im ≤ w.im) (pInRectInterior : z.Rectangle w ∈ nhds p)
    (gHolo : HolomorphicOn g (z.Rectangle w))
    (principalPart :
        Set.EqOn (f - fun (s : C) => A / (s - p)) g (z.Rectangle w \ {p}))
        :
        RectangleIntegral' f z w = A
```

How to find such a g? Riemann removable singularity theorem!

```
theorem existsDifferentiableOn_of_bddAbove source \{E: Type \ u\_1\} \ [NormedAddCommGroup \ E] \ [NormedSpace \ C \ E] \ \{f: C \to E\} \ [CompleteSpace \ E] \ \{s: Set \ C\} \ \{c: C\} \ (hc: s \in nhds \ c) \ (hd: HolomorphicOn \ f \ (s \setminus \{c\})) \ (hb: BddAbove \ (norm \circ f'' \ (s \setminus \{c\}))) : \exists \ (g: C \to E), \ HolomorphicOn \ g \ s \land Set.EqOn \ f \ g \ (s \setminus \{c\})
```

• Let's do some Number Theory!

Let's do some Number Theory!

"von Mangoldt" function:  $\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$ 

#print vonMangoldt

```
def ArithmeticFunction.vonMangoldt :
    ArithmeticFunction ℝ :=
    { toFun := fun n → if IsPrimePow n then
    Real.log ↑n.minFac else 0, map_zero' :=
    vonMangoldt._proof_2 }
```

local notation "\Lambda" => vonMangoldt

"von Mangoldt" function: 
$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

nt vonMangoldt

```
def ArithmeticFunction.vonMangoldt :
ArithmeticFunction \mathbb{R} :=
{ toFun := fun n \rightarrow if IsPrimePow n then
Real.log *n.minFac else 0, map_zero' :=
vonMangoldt._proof_2 }
```

(Michael Stoll)

source

def ArithmeticFunction

```
(R : Type u_1) [Zero R] :
```

Type u\_1

An arithmetic function is a function from N that maps 0 to 0. In the literature, they are often instead defined as functions from N+. Multiplication on ArithmeticFunctions is by Dirichlet convolution.

**▼** Equations

ArithmeticFunction R = ZeroHom N R

"von Mangoldt" function: 
$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

Chebyshev function: 
$$\psi(x) := \sum_{n \le x} \Lambda(n)$$

```
noncomputable def ChebyshevPsi (x : \mathbb{R}) : \mathbb{R} := (Finset range [x + 1]_+) sum \Lambda
```

local notation "ψ" => ChebyshevPsi

"von Mangoldt" function:  $\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$ 

Chebyshev function:  $\psi(x) := \sum_{n \le x} \Lambda(n)$ 

PNT (Medium Version):

$$|\psi(x) - x| \ll x \exp(-c(\log x)^{1/10}), x \to \infty$$

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\psi(x) := \sum_{n \le x} \Lambda(n)$$

PNT (Medium Version):

$$|\psi(x) - x| \ll x \exp(-c(\log x)^{1/10}), x \to \infty$$

```
theorem MediumPNT : \exists c > 0, declaration uses 'sorry' 
 (\psi - id) = 0[atTop] 
 fun (x : \mathbb{R}) \mapsto x * Real.exp (-c * (Real.log x) ^ ((1 : \mathbb{R}) / 10)) := by
```

```
f = O[l] g = \exists (c : R), Asymptotics.IsBigOWith c l f g
```

Asymptotics.IsBigOWith c l f g =  $\forall^f$  (x :  $\alpha$ ) in l,  $\|f x\| \le c * \|g x\|$ 

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\mathsf{PNT} \qquad \psi(x) := \sum_{n \le x} \Lambda(n)$$

$$|\psi(x) - x| \ll x \exp(-c(\log x)^{1/10}), x \to \infty$$

Zeta function:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}, \Re(s) > 1$$

```
/-- The Euler product for the Riemann \zeta function, valid for `s.re > 1`.
This version is stated in terms of `tprod`. -/
theorem riemannZeta_eulerProduct_tprod (hs : 1 < s.re) :</pre>
     \lceil \cdot \rangle p : Primes, (1 - (p : \mathbb{C}) \wedge (-s))^{-1} = riemannZeta s :=
```

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\psi(x) := \sum_{n \le x} \Lambda(n)$$

$$|\psi(x) - x| \ll x \exp(-c(\log x)^{1/10}), x \to \infty$$

Zeta function:

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}, \Re(s) > 1$$

Log-deriv:

$$\frac{\zeta'}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$$

```
theorem ArithmeticFunction.LSeries_vonMangoldt_eq_deriv_riemannZeta_div
    {s : C} (hs : 1 < s.re) :
    LSeries (fun (n : N) => ↑(vonMangoldt n)) s = -deriv riemannZeta s /
        riemannZeta s
```

LSeries f s =  $\sum$ ' (n : N), LSeries.term f s n

LSeries.term f s n = if n = 0 then 0 else f n /  $\uparrow$ n ^ s

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\mathbf{PNT} \qquad \psi(x) := \sum_{n \le x} \Lambda(n)$$

Idea: "Perron formula"

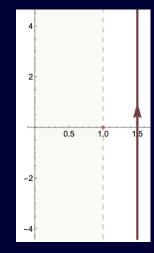
For 
$$\sigma > 0$$
,

For 
$$\sigma > 0$$
, 
$$\frac{\zeta'}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$$

$$\frac{1}{2\pi i} \int_{(\sigma)} \frac{y^{-s}}{s} ds = \mathbf{1}(y) := \begin{cases} 1 & \text{if } 0 < y < 1, \\ 0 & \text{else.} \end{cases}$$

$$1(y) := \begin{cases} 1 & \text{if } 0 < y < 1, \\ 0 & \text{olso} \end{cases}$$

Here 
$$\int_{(\sigma)}^{\sigma+i\infty} dt$$
. Issues with convergence!... (Later)



$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\psi(x) := \sum_{n \le x} \Lambda(n)$$

 $\frac{\zeta}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$ 

Idea: "Perron formula" For  $\sigma > 0$ ,

$$\frac{1}{2\pi i} \int_{(\sigma)} \frac{y^{-s}}{s} ds = \mathbf{1}(y) := \begin{cases} 1 & \text{if } 0 < y < 1, \\ 0 & \text{else.} \end{cases}$$

$$\mathbf{C}$$

So: 
$$\psi(x) := \sum_{n \le x} \Lambda(n) = \sum_{n} \Lambda(n) \mathbf{1}(n/x) = \sum_{n} \Lambda(n) \frac{1}{2\pi i} \int_{(\sigma)} \frac{(x/n)^{s}}{s} ds$$

$$= \frac{1}{2\pi i} \int_{(\sigma)} \left( \sum_{n} \Lambda(n) n^{-s} \right) \frac{x^{s}}{s} ds = \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \frac{x^{s}}{s} ds$$

Need  $\sigma > 1$ 

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$
  $\text{PNT}$   $\psi(x) := \sum_{n \le x} \Lambda(n)$ 

$$\psi(x) := \sum_{n \le x} \Lambda(n)$$

$$\psi(x) = \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds \qquad \text{Need } \sigma > 1 \qquad \frac{\zeta'}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$$

$$\frac{\zeta'}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$$

None of this is OK, no absolute convergence. Nevermind!

Now, zeta has meromorphic continuation

$$\zeta(s) := \frac{\pi^{s/2}}{\Gamma(s/2)} \left[ \int_{1}^{\infty} \left( 2 \sum_{n=1}^{\infty} e^{-\pi n^2 u^2} \right) (u^s + u^{1-s}) \frac{du}{u} - \frac{1}{1-s} - \frac{1}{s} \right]$$

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\psi(x) := \sum_{n \le x} \Lambda(n)$$

$$\psi(x) = \frac{1}{2\pi i} \int_{\sigma} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds \qquad \text{Need } \sigma > 1 \qquad \qquad \frac{\zeta'}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$$

None of this is OK, no absolute convergence. Nevermind!

Now, zeta has meromorphic continuation  $\zeta(s) := \frac{\pi^{s/2}}{\Gamma(s/2)} \left| \int_1^{\infty} \left( 2 \sum_{n=1}^{\infty} e^{-\pi n^2 u^2} \right) (u^s + u^{1-s}) \frac{du}{u} \right| = \frac{1}{1-s} - \frac{1}{s}$ 

$$\zeta(s) := \frac{\pi^{s/2}}{\Gamma(s/2)} \left[ \int_1^\infty \left( 2 \sum_{n=1}^\infty e^{-\pi n^2 u^2} \right) (u^s + u^{1-s}) \frac{du}{u} - \frac{1}{1-s} - \frac{1}{s} \right]$$

```
theorem differentiableAt_riemannZeta
       \{s: \ell\} (hs': s \neq 1):
   DifferentiableAt € riemannZeta s
```

So we can "pull contours"

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$P = \sum_{n \le x} \Lambda(n) \qquad \frac{\zeta'}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$$

$$\frac{\zeta'}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$$

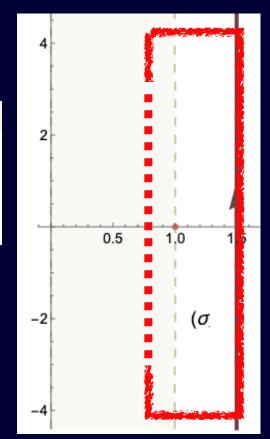
$$\psi(x) = \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds$$

```
Fact: \zeta'/\zeta is meromorphic on tall thin rectangle: 1 - \frac{1}{(\log T)^9} < \sigma
```

```
theorem LogDerivZetaHolcLargeT : declaration uses 'sorry'
     \exists (A : \mathbb{R}) (\_ : A \in Ioc \emptyset (1 / 2)), \forall (T : \mathbb{R}) (\_ : 3 < T),
     HolomorphicOn (fun (s : \mathbb{C}) \mapsto deriv \zeta s / (\zeta s))
       (( [[ ((1 : \mathbb{R}) - A / Real.log T ^ 9), 2 ]] ×C [[ -T, T ]]) \ {1}) := by
  sorry
```

#### And good bounds there (K-Sedlacek)

```
lemma LogDerivZetaBndUniform : declaration uses 'sorry'
     \exists (A : \mathbb{R}) (\_ : A \in Ioc \emptyset (1 / 2)) (C : \mathbb{R}) (\_ : \emptyset < C), \forall (\sigma : \mathbb{R}) (T : \mathbb{R}) (t : \mathbb{R}) (\_ : 3 < |t|)
     (_ : |t| \le T) (_ : \sigma \in Ico (1 - A / Real.log T ^ 9) 1),
     \|\text{deriv } \zeta \ (\sigma + t * I) \ / \ \zeta \ (\sigma + t * I) \| \le C * \text{Real.log } T ^ 9 := by
```



$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

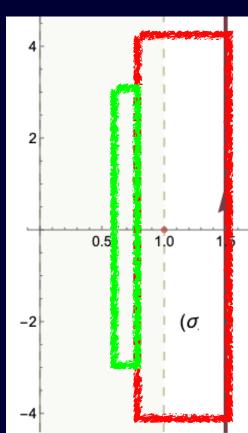
```
\exists \ (A : \mathbb{R}) \ (\_ : A \in Ioc \ 0 \ (1 \ / \ 2)) \ (C : \mathbb{R}) \ (\_ : 0 < C), \ \forall \ (\sigma : \mathbb{R}) \ (T : \mathbb{R}) \ (t : \mathbb{R}) \ (\_ : 3 < |t|)
(\_ : |t| \le T) \ (\_ : \sigma \in Ico \ (1 - A \ / \ Real \log T \ ^9) \ 1).
lemma LogDerivZetaBndUniform : declaration uses 'sorry'
      \|\text{deriv } \zeta (\sigma + t * I) / \zeta (\sigma + t * I)\| \le C * \text{Real.log } T ^ 9 := by
```

#### Near $s=1, \zeta'/\zeta$ blows up, so need to move away

```
theorem LogDerivZetaHolcSmallT : declaration uses 'sorry'
     \exists (\sigma_0 : \mathbb{R}) (\_: \sigma_0 < 1), HolomorphicOn (fun (s : \mathbb{C}) \mapsto \text{deriv } \zeta \ s \ / \ (\zeta \ s))
        (([[\sigma_0, 2]] \times C[[-3, 3]]) \setminus \{1\}) := by
```

And then you need to estimate the resulting integrals.

How to make this all rigorous?



$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\psi(x) = \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds$$

 $\psi(x) = \frac{1}{2\pi i} \int_{c_0}^{c} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds$  How to make this all rigorous?

Let 
$$\psi_{\epsilon}(x) := \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \, \widetilde{\nu}(\epsilon s) \, \frac{x^s}{s} \, ds = \sum_{n} \Lambda(n) \, \mathbf{1}_{\epsilon}(n/x)$$

```
theorem SmoothedChebyshevDirichlet
```

```
\{SmoothingF : \mathbb{R} \to \mathbb{R}\}\ (diffSmoothingF : ContDiff \mathbb{R} 1 SmoothingF)
     (SmoothingFpos : \forall x > 0, 0 \le SmoothingF x)
     (suppSmoothingF : Function.support SmoothingF ⊆ Set.Icc (1 / 2) 2)
     (mass_one : \int (x : \mathbb{R}) in Set.Ioi 0, SmoothingF x / x = 1) \{X : \mathbb{R}\}
     (X_gt: 3 < X) {\varepsilon : R} (\varepsilon > 0 < \varepsilon) (\varepsilon = t_one : \varepsilon < 1) :
SmoothedChebyshev SmoothingF \epsilon X =
           (\Sigma' (n : \mathbb{N}), ArithmeticFunction.vonMangoldt n *
            Smooth1 SmoothingF \epsilon (\uparrown / X))
```

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\psi(x) = \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds$$

How to make this all rigorous?

theorem SmoothedChebyshevDirichlet 
$$\{SmoothingF: R \Rightarrow R \} \ \ (diffSmoothingF: ContDiff R 1 SmoothingF)$$
 
$$(SmoothingFpos: \forall x > 0, 0 \leq SmoothingF x)$$
 
$$(suppSmoothingF: Function.support SmoothingF \subseteq Set.Icc (1 / 2) 2)$$
 
$$(mass_one: f (x: R) \ in Set.Ioi \ 0, SmoothingF x / x = 1) \ \{X: R \}$$
 
$$(X_cgt: 3 < X) \ \{\varepsilon: R \} \ (epos: 0 < \varepsilon) \ (\varepsilon_clt_one: \varepsilon < 1):$$
 
$$SmoothedChebyshev SmoothingF \varepsilon X =$$
 
$$(\Sigma' \ (n: N), ArithmeticFunction.vonMangoldt n *$$
 
$$SmoothSmoothingF \varepsilon \ (rn / X))$$

Let 
$$\psi_{\epsilon}(x) := \frac{1}{2\pi i} \int_{(\sigma)}^{\infty} \frac{\zeta'}{\zeta}(s) \, \widetilde{\nu}(\epsilon s) \, \frac{x^s}{s} \, ds = \sum_{n}^{\infty} \Lambda(n) \, \mathbf{1}_{\epsilon}(n/x)$$

Cost:  $|\psi_{\epsilon}(x) - \psi(x)| \ll \epsilon x \log x$ 

(Preston Tranbarger)

```
theorem SmoothedChebyshevClose {SmoothingF : \mathbb{R} \to \mathbb{R}} (diffSmoothingF : ContDiff \mathbb{R} 1 SmoothingF) (suppSmoothingF : Function.support SmoothingF \subseteq Icc (1 / 2) 2) (SmoothingFnonneg : \forall x > 0, 0 \subseteq SmoothingF x) (mass_one : \int x in Ioi 0, SmoothingF x / x = 1) : \exists (C : \mathbb{R}), \forall (X : \mathbb{R}) (\underline{\ } : 3 < X) (\varepsilon : \mathbb{R}) (\underline{\ } : 0 < \varepsilon) (\underline{\ } : \varepsilon < 1) (\underline{\ } : 2 < X * \varepsilon), ||SmoothedChebyshev SmoothingF \varepsilon X - ChebyshevPsi X|| \underline{\ } C * \varepsilon * X * Real.log X := by
```

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\psi(x) = \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds$$

 $\psi(x) = \frac{1}{2\pi i} \int_{\zeta} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds$  How to make this all rigorous?

Let 
$$\psi_{\epsilon}(x) := \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \ \widetilde{\nu}(\epsilon s) \frac{x^s}{s} \ ds = \sum_{n} \Lambda(n) \ \mathbf{1}_{\epsilon}(n/x)$$

Benefit:  $|\widetilde{\nu}(\epsilon s)| \ll 1/(\epsilon |s|)$ . So all integral exchanges are kosher

```
lemma MellinOfPsi \{v : \mathbb{R} \to \mathbb{R}\} (diffv : ContDiff \mathbb{R} \ 1 \ v)
      (suppv : v.support \subseteq Set.Icc (1 / 2) 2) :
      \exists \ C > 0, \ \forall \ (\sigma_1 : \mathbb{R}) \ (\_ : 0 < \sigma_1) \ (s : \mathbb{C}) \ (\_ : \sigma_1 \leq s.re) \ (\_ : s.re \leq 2),
      \|\mathcal{M}(v \cdot) s\| \le C * \|s\|^{-1} := by
```

Cost:  $|\psi_{\epsilon}(x) - \psi(x)| \ll \epsilon x \log x$ 

(Preston Tranbarger)

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k \\ 0 & \text{else} \end{cases}$$

$$\Psi(x) := \sum_{n \le x} \Lambda(n) \qquad \frac{\zeta'}{\zeta}(s) = \sum_{n} \frac{\Lambda(n)}{n^s}$$

$$\psi(x) = \frac{1}{2\pi i} \int_{(\sigma)} \frac{\zeta'}{\zeta}(s) \frac{x^s}{s} ds$$
 How to make this all rigorous?

Let 
$$\psi_{\epsilon}(x) := \frac{1}{2\pi i} \int_{(\sigma)}^{\infty} \frac{\zeta'}{\zeta}(s) \, \widetilde{\nu}(\epsilon s) \, \frac{x^s}{s} \, ds = \sum_{n}^{\infty} \Lambda(n) \, \mathbf{1}_{\epsilon}(n/x)$$

Benefit:  $|\widetilde{\nu}(\epsilon s)| \ll 1/(\epsilon |s|)$ . So all integral exchanges are kosher

Cost: 
$$|\psi_{\epsilon}(x) - \psi(x)| \ll \epsilon x \log x$$
 (Preston Tranbarger)

Let's see how to coordinate everything over Zulip/Blueprint!