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with  (for all n) and , then 
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a ≤ b ≤ c a → L, c → L b → L
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• There has to be a better way!

• Analogy: Topology
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• First: In a metric space, a point is in the “interior” of a set if 
an  ball around it is in the setε

• And DEF: a set is open if every point in it is an interior point

• Compute: finite intersections of opens are open,

• Arbitrary unions of opens are open

• Empty set, whole space are open
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• In Lean, “Set X” is the Type of all functions PropX →
• X is not a subset of itself; “univ” is the function X to all 1’s
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• How to make the “right” notion of limit?

• Idea: “zoom in” on x : X along arbitrary open sets.

• Def: The “neighborhood filter”, , of a point x in a 
topological space X is: the collection of all Sets of X which 
contain an open set containing x.

𝒩x



Analysis Lecture 2: “Filters”

• Check that: (univ : Set X) is in the collection, and collection 
is closed under finite intersections, and inclusion.

• Def: The “neighborhood filter”, , of a point x in a 
topological space X is: the collection of all Sets of X which 
contain an open set containing x.
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• cocompact

• atTop

( )|x | → ∞



Analysis Lecture 2: “Filters”

• Metric balls are unnecessary for Topology, use abstract “Open”

• Topology is unnecessary for “nhd”, use abstract “Filter” 

• Given , how to say that  “TendsTo”  near ?f : X → Y f y x
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• Given , how to say that  “TendsTo”  near ?f : X → Y f y x
• If for all , .V ∈ 𝒩y f −1V ∈ 𝒩x

• One fell swoop covers sequences, functions, one-sided limits, 
limits at infinity, etc!
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• One fell swoop covers sequences, functions, one-sided limits, 
limits at infinity, etc!

• Filter.eventually: 

• Time for exercises!


