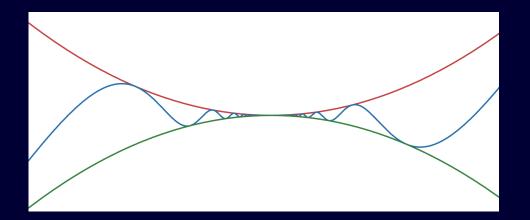


Alex Kontorovich

RUTGERS UNIVERSITY / IAS

- Recall: Squeeze Theorem: Let $a,b,c:\mathbb{N}\to\mathbb{R}$ be sequences with $a\leq b\leq c$ (for all n) and $a\to L,c\to L$, then $b\to L$
- Another Squeeze Theorem: Let $a,b,c:\mathbb{R}\to\mathbb{R}$ be functions with $a\leq b\leq c$ (for all x) and $a(x)\to L$, $c(x)\to L$ as $x\to x_0$, then $b(x)\to L$



- Recall: Squeeze Theorem: Let $a,b,c:\mathbb{N}\to\mathbb{R}$ be sequences with $a\leq b\leq c$ (for all n) and $a\to L,c\to L$, then $b\to L$
- Another Squeeze Theorem: Let $a,b,c:\mathbb{R}\to\mathbb{R}$ be functions with $a\leq b\leq c$ (for all x) and $a(x)\to L$, $c(x)\to L$ as $x\to x_0$, then $b(x)\to L$
- Another Squeeze Theorem: Let $a,b,c:\mathbb{R}\to\mathbb{R}$ be functions with $a\leq b\leq c$ (for all x) and $a(x)\to L,\,c(x)\to L$ as $x\to\infty$, then $b(x)\to L$

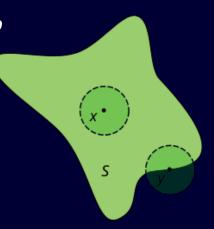
- Another Squeeze Theorem: Let $a,b,c:\mathbb{R}\to\mathbb{R}$ be functions with $a\leq b\leq c$ (for all x) and $a(x)\to L$, $c(x)\to L$ as $x\to x_0$, then $b(x)\to L$
- Another Squeeze Theorem: Let $a,b,c:\mathbb{R}\to\mathbb{R}$ be functions with $a\leq b\leq c$ (for all x) and $a(x)\to L,\,c(x)\to L$ as $x\to\infty$, then $b(x)\to L$
- Another Squeeze Theorem: Let $a,b,c:\mathbb{R}\to\mathbb{R}$ be functions with $a\leq b\leq c$ (for all x) and $a(x)\to L$, $c(x)\to L$ as $x\to x_0^+$, then $b(x)\to L$

• Another Squeeze Theorem: Let $a,b,c:\mathbb{R}\to\mathbb{R}$ be functions with $a\leq b\leq c$ (for all x) and $a(x)\to L$, $c(x)\to L$ as $x\to x_0^+$, then $b(x)\to L$

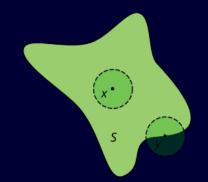
 $\bullet \bullet \bullet$

- There has to be a better way!
- Analogy: Topology

- Analogy: Topology
- First: In a metric space, a point is in the "interior" of a set if an ε ball around it is in the set
- And DEF: a set is open if every point in it is an interior point
- Compute: finite intersections of opens are open,
- Arbitrary unions of opens are open
- Empty set, whole space are open



- Analogy: Topology
- First: In a metric space, a point is in the "interior" of a set if an ε ball around it is in the set
- And DEF: a set is open if every point in it is an interior point



- Better: An Abstract Topology is a collection of sets we declare to be "Open", including empty set and whole space,
- closed under: finite intersections, and arbitrary unions

- Analogy: Topology
- Better: An Abstract Topology is a collection of sets we declare to be "Open", including empty set and whole space,
- closed under: finite intersections, and arbitrary unions

```
class topologicalSpace (X : Type*) where
  isOpen : Set X → Prop
  isOpen_univ : isOpen (Set.univ : Set X)
  finiteInter : ∀ s t : Set X, isOpen s → isOpen t → isOpen (s n t)
  arbUnion : ∀ (ι : Set (Set X)), (∀ s ∈ ι, isOpen s) → isOpen (∪ s ∈ ι, s)
```

Analogy: Topology

```
class topologicalSpace (X : Type*) where
isOpen : Set X → Prop
isOpen_univ : isOpen (Set.univ : Set X)
finiteInter : ∀ s t : Set X, isOpen s → isOpen t → isOpen (s n t)
arbUnion : ∀ (ι : Set (Set X)), (∀ s ∈ ι, isOpen s) → isOpen (∪ s ∈ ι, s)
```

- In Lean, "Set X" is the Type of all functions $X o \mathsf{Prop}$
- X is not a subset of itself; "univ" is the function X to all 1's
 - How to make the "right" notion of limit?

- How to make the "right" notion of limit?
- Idea: "zoom in" on x : X along arbitrary open sets.

• Def: The "neighborhood filter", $\mathcal{N}x$, of a point x in a topological space X is: the collection of all Sets of X which contain an open set containing x.

- Def: The "neighborhood filter", $\mathcal{N}x$, of a point x in a topological space X is: the collection of all Sets of X which contain an open set containing x.
- Check that: (univ: Set X) is in the collection, and collection is closed under finite intersections, and inclusion.
- That's a Filter!

is closed under finite intersections, and inclusion.

• Check that: (univ : Set X) is in the collection, and collection

That's a Filter!

```
class filter (X : Type*) where
  sets : Set (Set X)
  univ_is : Set.univ ∈ sets
  finiteInter : ∀ s t : Set X, s ∈ sets → t ∈ sets → (s n t) ∈ sets
  inclusion : ∀ s t : Set X, s ∈ sets → s ⊆ t → t ∈ sets
```

```
class filter (X : Type*) where
sets : Set (Set X)
univ_is : Set.univ ∈ sets
finiteInter : ∀ s t : Set X, s ∈ sets → t ∈ sets → (s n t) ∈ sets
inclusion : ∀ s t : Set X, s ∈ sets → s ⊆ t → t ∈ sets
```


atTop

```
class filter (X : Type*) where
  sets : Set (Set X)
  univ_is : Set.univ ∈ sets
  finiteInter : ∀ s t : Set X, s ∈ sets → t ∈ sets → (s n t) ∈ sets
  inclusion : ∀ s t : Set X, s ∈ sets → s ⊆ t → t ∈ sets
```

atTop

cocompact

 $(|x| \to \infty)$

```
class filter (X : Type*) where
  sets : Set (Set X)
  univ_is : Set.univ ∈ sets
  finiteInter : ∀ s t : Set X, s ∈ sets → t ∈ sets → (s n t) ∈ sets
  inclusion : ∀ s t : Set X, s ∈ sets → s ⊆ t → t ∈ sets
```

- Metric balls are unnecessary for Topology, use abstract "Open"
- Topology is unnecessary for "nhd", use abstract "Filter"
- Given $f: X \to Y$, how to say that f "TendsTo" y near x?

```
class filter (X : Type*) where
  sets : Set (Set X)
  univ_is : Set.univ ∈ sets
  finiteInter : ∀ s t : Set X, s ∈ sets → t ∈ sets → (s n t) ∈ sets
  inclusion : ∀ s t : Set X, s ∈ sets → s ⊆ t → t ∈ sets
```

• Given $f: X \to Y$, how to say that f "TendsTo" y near x?
• If for all $V \in \mathcal{N}y$, $f^{-1}V \in \mathcal{N}x$.

```
def tendsto (X Y : Type*) (f : X → Y) (Nhdx : filter X) (Nhdy : filter Y) :

| Prop := \forall V ∈ Nhdy.sets, f^{-1} V ∈ Nhdx.sets
```

 One fell swoop covers sequences, functions, one-sided limits, limits at infinity, etc!

```
def tendsto (X Y : Type*) (f : X → Y) (Nhdx : filter X) (Nhdy : filter Y) :

| Prop := \forall V ∈ Nhdy.sets, f ^{-1}' V ∈ Nhdx.sets
```

• One fell swoop covers sequences, functions, one-sided limits, limits at infinity, etc!

Squeeze Theorem

```
theorem tendsto_of_tendsto_of_le_of_le  \{\alpha : \textit{Type } u\} \ \{\beta : \textit{Type } v\} \ [\textit{TopologicalSpace } \alpha] \\ [\textit{Preorder } \alpha] \ [\textit{OrderTopology } \alpha] \ \{f \ g \ h : \beta \rightarrow \alpha\} \\ \{b : \textit{Filter } \beta\} \ \{a : \alpha\} \ (\text{hg : Filter.Tendsto } g \ b \ (\text{nhds } a)) \\ (\text{hh : Filter.Tendsto } h \ b \ (\text{nhds } a)) \ (\text{hgf : g} \leq f) \\ (\text{hfh : f} \leq h) : \\ \text{Filter.Tendsto } f \ b \ (\text{nhds } a)
```

```
def tendsto (X Y : Type*) (f : X \rightarrow Y) (Nhdx : filter X) (Nhdy : filter Y) :
    Prop := \forall V \in Nhdy.sets, f ^{-1} V \in Nhdx.sets
```

• One fell swoop covers sequences, functions, one-sided limits, limits at infinity, etc!

Squeeze Theorem

```
theorem tendsto_of_tendsto_of_le_of_le  \{\alpha : \textit{Type u}\} \ \{\beta : \textit{Type v}\} \ [\textit{TopologicalSpace }\alpha] \\ [\textit{Preorder }\alpha] \ [\textit{OrderTopology }\alpha] \ \{f \ g \ h : \beta \rightarrow \alpha\} \\ \{b : \textit{Filter }\beta\} \ \{a : \alpha\} \ (\text{hg : Filter.Tendsto g b (nhds a)}) \\ (\text{hh : Filter.Tendsto h b (nhds a)) (hgf : g \le f)} \\ (\text{hfh : f < h) :} \qquad (\text{hgf : }\forall^f \ (\text{b : }\beta) \ \text{in b, g b } \le \text{f b)} \\ \text{Filter.Tendsto f b (nhds a)}
```

```
def tendsto (X Y : Type*) (f : X → Y) (Nhdx : filter X) (Nhdy : filter Y) :

| Prop := \forall V ∈ Nhdy.sets, f ^{-1}' V ∈ Nhdx.sets
```

 One fell swoop covers sequences, functions, one-sided limits, limits at infinity, etc!

```
(hgf: \forall^f (b: \beta) in b, g b \le f b)
(hfh: \forall^f (b: \beta) in b, f b \le h b):
```

• Filter.eventually:

```
A property `p` occurs "eventually" in a filter `f` if the set for which the property holds is in the filter -/ def eventually (X : Type*) (p : X \rightarrow Prop) (f : Filter X) : Prop := \{ x \mid p \mid x \} \in f
```

Time for exercises!