
RUTGERS UNIVERSITY / IAS

Alex Kontorovich

Workshop on

Workshop on

• Software for code
verification (and
oh yeah, proving
theorems)

• Massive, beautifully
synthesized,
interconnected
library, making it
possible to do
research/teach
formally

• “Lean” means different things in contexts, so let’s clarify:

“Here goes the game: 1. Nf3 Nf6 2. c4 g6 3. Nc3 Bg7 4. d4 0-0
5. Bf4 d5 (this is a transposed Grünfeld Defence) 6. Qb3 dxc4
7. Qxc4 c6 8. e4 Nbd7 9. Rd1 Nb6 10. Qc5 Bg4 11. Bg5 Na4!!
Holy cow, what a move!! Can you believe he did that?…”

Analogy: Chess
Imagine a world where we discuss chess games like this:

If you’re a chess aficionado, you have no trouble reading this
and converting algebraic notation for moves into an actual
game board in your mind’s eye.

But this is exactly how we currently teach math!

For the rest of us, this is difficult and
painful to do (until sufficiently practiced).

But this is exactly how we currently teach math!

Proof: If not, then it’s equal to a fraction in lowest terms, and
we can square both sides and cross multiply to get .
Then must be even, …

p2 = 2q2

p
At every move, the “mathematical game board” (what are
the assumptions and what is to be proved) is changing!

This is effortless (System I) for you all to track,
but very difficult (System II) for beginners.

Let’s look at the game boards:

Example: Theorem: .2 ∉ ℚ

But this is exactly how we currently teach math!
Example: Theorem: .2 ∉ ℚ

Proof: If not, then it’s equal to a fraction in lowest terms, and
we can square both sides and cross multiply to get .
Then must be even, …

p2 = 2q2

p Let’s look at the game boards:

But this is exactly how we currently teach math!
Example: Theorem: .2 ∉ ℚ

Proof: If not, then it’s equal to a fraction in lowest terms, and
we can square both sides and cross multiply to get .
Then must be even, …

p2 = 2q2

p Let’s look at the game boards:

But this is exactly how we currently teach math!
Example: Theorem: .2 ∉ ℚ

Proof: If not, then it’s equal to a fraction in lowest terms, and
we can square both sides and cross multiply to get .
Then must be even, …

p2 = 2q2

p Let’s look at the game boards:

But this is exactly how we currently teach math!
Example: Theorem: .2 ∉ ℚ

Proof: If not, then it’s equal to a fraction in lowest terms, and
we can square both sides and cross multiply to get .
Then must be even, …

p2 = 2q2

p Let’s look at the game boards:

But this is exactly how we currently teach math!
Example: Theorem: .2 ∉ ℚ

Proof: If not, then it’s equal to a fraction in lowest terms, and
we can square both sides and cross multiply to get .
Then must be even, …

p2 = 2q2

p Let’s look at the game boards:

But this is exactly how we currently teach math!
Example: Theorem: .2 ∉ ℚ

Proof: If not, then it’s equal to a fraction in lowest terms, and
we can square both sides and cross multiply to get .
Then must be even, …

p2 = 2q2

p Let’s look at the game boards:
We would never write this all out when teaching

• Take way too long (cumbersome)
• Unnecessary; we all learned without it.
• Eventually: learning to make those mental images is vital to

being able to do math at a high level. But not from the start!
Q: How to force people to use Lean?

• 1978: Knuth releases TeX
• Every mathematician handwrites papers, gives to secretary

to typeset, waits a few weeks/months, hopes it’s faithful
• 1980’s: Spivak pushes for AMSTeX, still few people use it
• 1985-1990’s: LaTeX comes out, lots of macros, by 2000 very

few mathematicians (Sarnak, Bourgain, Iwaniec…) still
handwrite own papers. (Now AI can do it for them…)

• Also: overleaf (free web-app).
• The “Knuth constant” (= time to typeset ($ \ { …) / time to

handwrite) went below 1. Everybody switched voluntarily!

• Same can happen with Lean!

Q: How to force people to use Lean? A: Don’t!

• de Bruijin constant (lines of formal code / lines of natural
proof) is wrong metric! (LLMs can produce lots of lines of
code very quickly; no longer a proxy for Time!)

• Instead, measure: Time to formalize paper in Lean, letting
kernel check correctness / Time to typeset paper in LaTeX,
rechecking each lemma again and again for corre

• Same can happen with Lean!

• The instant that ratio gets below 1 through great, efficient
libraries, automation/tactics/LLMs, Lean as a free web-app
(GitHub codespaces, Gitpod, live.lean-lang.org), etc, etc…,
everyone will start working formally, voluntarily!

everyone will start working formally, voluntarily!

• We’re now at the stage (thanks to Mathlib, LLMs)
where people with a modicum of understanding of
how Lean works can already meaningfully play with
formalization.

• Key idea:

(Quasi)-Autoformalization

(Quasi)-Autoformalization

• This is where
the dialogue
with the
computer can
take place, at
the level of
“ideas”!

• Then an LLM can try to convert ideas into natural
language statements, and can propose natural language
proof sketch

(Quasi)-Autoformalization

• Then an LLM can try to convert ideas into natural
language statements, and can propose natural language
proof sketch • At every stage, human can intervene!

(Quasi)-Autoformalization

• Then an LLM formalizes informal statement and uses
informal proof as scaffold for proposed formal proof!

(Quasi)-Autoformalization

• Then an LLM formalizes informal statement and uses
informal proof as scaffold for proposed formal proof!

(Quasi)-Autoformalization

• Let’s try it out!

• Suggestion: put your computer (iPad/phone) away and
just follow along on paper.

• After “lecture” comes time to try it yourself.

