An Introduction to Formal Real
Analysis, Rutgers University, Fall
2025, Math 311H

Lecture 8: Advanced Limit Theorems and Induction

Prof. Alex Kontorovich

This text is automatically generated by LLM from
“Real Analysis, The Game”, Lecture 8

1 Introduction: Mathematical Induction

SIMPLICIO: Hey Socrates, I've been thinking about something that’s been
bothering me. When we prove things in mathematics, we usually prove a
specific statement. But what if I want to prove something is true for all
natural numbers? Like, how do I prove a statement for 0, 1, 2, 3, 4, and so
on... forever?

SOCRATES: Ah, an excellent question! You're right that we can’t just
check each case one by one—that would take infinitely long. Tell me, Simp-
licio, have you ever climbed a ladder?

SIMPLICIO: Of course! What does that have to do with anything?

SOCRATES: Well, imagine an infinitely tall ladder reaching up to the sky.
If I wanted to convince you that you could climb to any rung on this ladder,
what would I need to show you?

SIMPLICIO: Hmm... I guess you’d need to show me that I can reach the
bottom-most rung?

SOCRATES: Good start! And what else?

SIMPLICIO: Well, if I'm standing on any particular rung, I’d need to know
I can reach the next one up. So if I can always step from one rung to the
next...

SOCRATES: Exactly! So if you can reach the first rung, and you can
always step from rung k to rung k + 1, then what can you conclude?
SIMPLICIO: Oh! Then I can reach any rung I want! If I want to reach
rung 100, I just start at rung 0, step to rung 1, then to rung 2, and keep
going until I reach rung 100. And the same works for any number!
SOCRATES: Precisely! This is the essence of mathematical induction.

To prove something is true for all natural numbers n, you need exactly two
things:

e A base case: prove it’s true for n = 0

e An inductive step: prove that if it’s true for n = k, then it’s true for
n=k+1

SIMPLICIO: Wait, but in the inductive step, aren’t we assuming what
we're trying to prove? Isn’t that circular reasoning?

SOCRATES: An astute observation! But no, it’s not circular. We're not
assuming the statement is true for all n. We're only assuming it’s true for
one particular value k, and using that assumption to prove that it’s true for
k + 1. We're proving an implication: “if P(k) then P(k + 1)”. Combined
with the base case, this creates a chain reaction that reaches any natural
number.

SIMPLICIO: Hmm, I think I see. So the assumption “it’s true for k” is
called the inductive hypothesis?

SOCRATES: Exactly! And that hypothesis is your most powerful tool. It’s
like having a foothold on rung k£ that you can push off from to reach rung
k+1.

SIMPLICIO: But why does this work? I mean, why should I believe this
principle?

SOCRATES: Ah, a deep question! It comes from the very definition of
the natural numbers themselves. How do you think the natural numbers are
constructed?

SIMPLICIO: Well... I guess we start with 0. And then we have 1, which
isO+ 1. And 21is 1 4+ 1. So each number is the “successor” of the previous
one?

SOCRATES: Beautifull The natural numbers are defined by exactly this
process:

e Zero is a natural number
e If k is a natural number, then k + 1 is also a natural number
e These are the only natural numbers

Do you see how this mirrors the structure of induction?

SIMPLICIO: Oh wow! The base case corresponds to “zero is a natural
number,” and the inductive step corresponds to “if k£ is a natural number,
then so is £ 4+ 1.” Induction is just the construction of the natural numbers
turned into a proof technique!

SOCRATES: Precisely! There are no “gaps” in the natural numbers—no
number that can’t be reached by starting at 0 and repeatedly adding 1. This
is why induction works.

In fact, this is not just a philosophical observation—this is literally how
the natural numbers are implemented in Lean! In Lean’s type theory, a
natural number is defined inductively as either:

e zero : N, the base case, or

e succ n : N, the successor of another natural number n
Here’s how this looks in the core of Lean:

inductive Nat where
| zero : Nat
| succ (n : Nat) : Nat

You simply declare the existence of a natural number called zero, and
then we declare that, given any natural number n, there’s another one called
succ n. (The word succ is here just a name; we could have called it Alice n.
The important thing is that we're giving a way to construct a new natural
number from a previously existing one.)

So the number 3, for instance, is literally represented as succ (succ (succ

zero)). The principle of induction doesn’t just resemble this construction, it

directly exploits it! When you prove something by induction in Lean, you're
working with the actual computational structure of how natural numbers
exist in the system.

SIMPLICIO: That’s amazing! So induction isn’t just a proof technique,
it’s baked into the very fabric of how Lean understands numbers?

SOCRATES: Exactly. The principle of mathematical induction is a theo-
rem in many mathematical frameworks, but in type theory, it’s a fundamental
consequence of how the natural numbers are defined.

SIMPLICIO: Okay, I'm convinced this is a legitimate proof technique. Can
you give me an example?

SOCRATES: Certainly.

2 Big Boss: Reciprocals of Convergent Se-
quences

One of the most important limit theorems concerns reciprocals: if a sequence
converges to a nonzero limit, then the sequence of reciprocals converges to
the reciprocal of the limit. This result is crucial for proving theorems about
quotients and rational functions.

This is a Big Boss level—it requires synthesizing multiple techniques:
working with nonzero limits, manipulating complex algebraic expressions,
and carefully choosing epsilon strategies.

2.1 The Mathematical Setup

Theorem: If a : N — R converges to L with L # 0, and b : N — R is
defined by b(n) = 1/a(n) for all n, then b converges to 1/L.
This is the most technically challenging proof in this lecture series.

2.2 New Tools

abs_div: For any real numbers z and y (with y # 0), we have |z/y| = |z|/|y|.
nonzero_of_abs_pos: If 0 < |z|, then z # 0.

2.3 Strategic Approach
The key challenges are:

e Ensuring that a(n) # 0 eventually, so the reciprocals are well-defined
e Bounding |1/a(n) — 1/L| by getting a common denominator

e Choosing the right epsilon when applying the convergence of a to L
e Using the lower bound on |a(n)| to control the reciprocals

The critical insight is that the "right” epsilon isn’t the obvious choice.
We use ¢ - | L|?/2, which is precisely engineered to make the final inequalities
work out.

2.4 Lean Solution

Statement InvLim (a : N—R) (L : R) (aTolL : SeqLim a L)
(LneZero : L # 0) (b : N—

R) (bEqInva : V n, bn =1/ a n)
SeqLim b (1 / L) := by

choose NhalflL hNhalflL using EventuallyGeHalflLimPos a L

aTolL LneZero

intro € he

have : 0 < |L| := by apply abs_pos_of_nonzero LneZero

specialize aToL (e * |L| * |L| / 2) (by bound)

choose Na hNa using aTolL

use Na + NhalfL

intro n hn

specialize bEqInva n

rewrite [bEqInval]

have hnHalflL : NhalfL < n := by bound

have hna : Na < n := by bound

specialize hNhalfL n hnHalflL

specialize hNa n hna

have : 0 < |a nl| := by bound

have : a n # 0 := by apply nonzero_of_abs_pos this

have 11 : |1 / an -1/ Ll = |(L -amn) / (an*L)| :=
by field_simp

have 12 : |(L - amn) / (an *x L)l = [(L - amn)l / I(a
n *x L)| := by apply abs_div

have 13 : |(L - an)l / |I(an *x L)| = (L - an) / (la
n|l * |L|) := by bound

have 14 : |L - a n|l = |-(a n - L)| := by ring_nf

have 15 : |-(a n - L)| = |(an - L)| := by apply abs_neg

have 16 : |la n - L| / (la nl * |L|) < (e * |L| * |L| /
2) / (la nl * |L|) := by field_simp; bound

have 110 : |(L - a n)| / (la nl * |L|) = |-(a n - L)I| /
(la n|l * |LI) := by rewrite [14]; rfl

have 111 : |[-(a n - L)| / (la nl * |ILI) = |(a n - L)I| /
(la n|l * |LI) := by rewrite [15]; rfl

have 113 : ¢ * |L| = |Ll / 2 / (la nl * |L|) = e * |L| /
2 / la n|l := by field_simp

have 114 : ¢ * |L|l / 2 / la n|l < e := by field_simp;
bound

linarith [11, 12, 13, 110, 111, 16, 113, 114]

2.5 Natural Language Proof

Proof: Assume a(n) — L with L # 0, and let b(n) = 1/a(n). We must show
b(n) — 1/L.

First, using the theorem EventuallyGeHalfLimPos, there exists N; such
that for all n > Ny, we have |a(n)| > |L|/2 > 0, ensuring a(n) # 0 and b(n)

is well-defined.
Given ¢ > 0, since a(n) — L, there exists Ny such that for all n > Ny:

L2
() - 2] < 2

Let N = Ny + N,. For any n > N, we have:

b(n) — 1/Z] = [1/a(n) — 1/L,
= |(L — a(n))/(a(n) - L)
= |L — a(n)|/(a(n)| - |L])
= la(n) — LI/(la(n)| - |Z])

e|L2/2
[a(m)[- 2]
el
laln)|
_ el
RERPIE

=&

)|
)|

n

Therefore, b(n) — 1/L. QED

2.6 Applications and Extensions

With this theorem, we now have a complete toolkit for limits of rational
functions. Combined with results on sums and products, we can prove:

Quotient Theorem: If a(n) — L and ¢(n) — M with M # 0, then
a(n)/e(n) — L/M.

The proof is straightforward: first show 1/c¢(n) — 1/M using the re-
ciprocal theorem, then use the product theorem to show a(n) - (1/c¢(n)) —
L-(1/M)=L/M.

This completes the fundamental arithmetic of limits: sums, products, and
quotients—the building blocks for analyzing polynomials, rational functions,
and complex expressions throughout calculus and analysis.

3 By Cases: Case Analysis Without Hypothe-
ses

When you already have a hypothesis h : PV @), you can use cases’ to break
the goal into two subgoals. But how do you break into cases when you don’t
already have a hypothesis? That’s where the by_cases tactic comes in.

3.1 The by_cases Tactic

The by_cases tactic has syntax by_cases h : fact, where h is your name
for a new hypothesis, and fact is the fact claimed in the hypothesis. Calling
by_cases creates two subgoals:

e One with the additional hypothesis h : fact
e One with the hypothesish : —fact
This allows you to perform case analysis on any proposition, not just ones

you already have as hypotheses.

3.2 Application: Eventually Greater than Half the Limit

We can use by_cases to prove a more general version of EventuallyGe-
HalfLimPos that doesn’t require the assumption L # 0.

Theorem: If a : N — R converges to L (with no assumption that L # 0),
then there exists N such that for all n > N, we have |a(n)| > |L|/2.

3.3 Lean Solution

Statement EventuallyGeHalfLim (a : N—R) (L : R) (aToL
SeqLim a L)

4N, Vo>N, ILI / 2< la (n)| := by
by_cases h L =20
use 1

intro n hn

rewrite [h]

bound

apply EventuallyGeHalflLimPos a L aTolL h

3.4 Natural Language Proof

Proof: We proceed by cases on whether L = 0.

Case 1: If L =0, then |L|/2 = 0. Since |a(n)| > 0 for all n, we can take
N =1, and the inequality |L|/2 < |a(n)| holds trivially for all n > N.

Case 2: If L # 0, then we can apply the theorem EventuallyGeHalfLimPos
(which requires L # 0 as a hypothesis) to obtain the desired N. QED

3.5 Importance

The by_cases tactic is essential for handling propositions where the truth
value matters but isn’t already known. It allows us to:

e Handle edge cases systematically
e Prove theorems with weaker hypotheses
e Apply different proof strategies depending on which case holds

This technique is ubiquitous in mathematical reasoning, from analysis to
algebra to combinatorics.

10

4 Mathematical Induction

Induction is one of the most powerful proof techniques for statements about
natural numbers. It allows us to prove infinitely many statements (one for
each natural number) using only two steps: a base case and an inductive
step.

4.1 The Principle of Mathematical Induction

To prove that a property P(n) holds for all natural numbers n, it suffices to
prove:

1. Base Case: P(0) is true
2. Inductive Step: For all k, if P(k) is true, then P(k + 1) is true

The intuition is like climbing an infinite ladder: if you can reach the first
rung (base case), and if being on any rung allows you to reach the next rung
(inductive step), then you can reach every rung.

4.2 The induction’ Tactic

The syntax for induction in Lean is: induction’ n with k hk. This means:
e Apply induction on the variable n
e Use k for the new dummy variable in the inductive step

e Use hk for the induction hypothesis on k

4.3 New Tool: ge_one_of nonzero

If a natural number n # 0, then 1 < n. This simple lemma is useful for
handling the case when we’re past the base case.

4.4 Example: Exponential Growth

Theorem: For all natural numbers n, we have n < 2".

This theorem captures the idea that exponential functions grow faster
than linear functions—a fundamental fact with applications throughout math-
ematics and computer science.

11

4.5 Lean Solution

Statement (n : N) : n < 2 ~ n := by
induction’ n with k hk

norm_num

by_cases hkO : k = 0

rewrite [hkO]

norm_num

have : 1 < k := by apply ge_one_of_nonzero hkO
have f1 k+ 1< 2 % k := by bound

have f2 : 2 * k < 2 * 2 ~ k := by linarith [hk]
have £f3 2 2 " k=2"(k + 1) := by ring_nf
linarith [f1, f2, £3]

4.6 Natural Language Proof

Proof: We proceed by induction on n.

Base Case (n = 0): We have 0 < 2 = 1, which is true.

Inductive Step: Assume k < 2* (induction hypothesis). We must show
k+1< 2k,

We proceed by cases on whether & = 0.

If k=0,then k+1=1<2=2" =2k

If k£ # 0, then k& > 1. Therefore:

k+1<2k (since k > 1)
<2.2F (by induction hypothesis)
— 2k+1

This completes the induction. QED

4.7 Applications

Mathematical induction is essential for proving:
e Formulas for sums: Y " i =n(n+1)/2
e Inequalities: n! > 2" for large n

e Divisibility properties: n® — n is divisible by 6

12

e Recursive definitions: Fibonacci numbers, factorials, etc.
e Algorithm correctness: proving loop invariants

The combination of induction with other proof techniques (like case analy-
sis) creates a powerful toolkit for discrete mathematics and computer science.

4.8 Key Insight

This proof demonstrates an important strategy: within an inductive proof,
you may need to perform additional case analysis (using by_cases). The
inductive hypothesis gives you leverage, but you often need to be clever
about how to apply it, especially when dealing with boundary cases or when
the algebra requires additional constraints.

13

|
T, 0\&%%/ foo

~———

%/W\Www Cone 04y

4, -l ¢ §
Ut 0y
Wk \‘\Z\L\’LL\ L. @M««@m\
e,
[5e); \ L@—;{,\ e (17(4"}7’“(/1.
54" ot SRS qfl’\“x
,Ci’l" \\%\‘\L\\é{‘ ° 0 L
&\5\:}‘(O\TO\' ,‘ @%L Z/b\{%c/o: L?LO\
E(Q{LA\/ q gs\"r
@ﬂ', L~ U

M~ O KQ_ L%?bli_

bt £04 021U 12 By el als_pvs o nednn
Le Plo 0 ¢l - =0 Lﬁ&'

Yoy
(Tﬂu%\f%t T ({-”’\l/?s V%‘/—\/

l Vo, w2vy —

b By 3 e ML Ry

ALl 2 T ILVZ

(a\ > Ul =Ny g Bty e o [ot Lok
Claage N L Yo ‘T‘\L -

Clusye M1 WL o
Ule PI4NY, G ey Y P14 k».""c“f-
Ml =0 l’\f\ W2 M4m,

L\«w\/\\ N en =W Do

N 7 S~ v~ — = =
$/um\‘k R T C R)
(peralae WL, WL LW Uy £ Gy

(AWt} Y&sc?qu 0\‘) G \ [':l(,\(’z

L\V"(‘PZ l‘ "|‘ < L——”l.. _

- by Wo-&’]S"*f.
& LI 0((4\“_ &7 "‘W?’L\EM’L ‘310-]

Qne% 0 P !s OY‘Y’(V novactr ke a3 oy (g,
AW AT WA G:a\'» \(’:_“L\ 1

4L
o £, \-L_i\ ey

(tw el (a 0) ‘W[) A3t
(\Q’\m-.}(Q(‘{) ot '("’} | Leat

%P'\{ \\5}}] Qf"*,(" (a..\-(LI Cf_-

lewe B5 \ L—a,| = (——Cqu_,(,‘\ . \7 pn7~h\4
L\v\~L L *‘éWL\ 7_(ﬁh_,[,\ = \ov 77’,\) %},.7,
i SRM,) Gohl' (0\._(,] cs

Tan Ul

B el Q,E% b b
&, UL L Aa-\L\

L SRR A Y R Y
\ﬁH K G >/\ e ,,L\) g:\j.‘f
g Bg, -1

TLTQ;\ 4 ¢ iz ‘6> -QrCU.j.wf’/ Youq |

s (B g 0
Part c: Natural language proof that 1/an ->1/L (L !=0)

let epsilon be given and assume epsilon > 0. Then epsilon |L|A2 /2 > 0. since a n -> L, we can make n
large enough so that |a n - L| < epsilon |L|A2 /2. We can also make n even larger (if need be) so that |a
n| >= |L|/2.

Taking n large enough for both conditions to hold, We can bound:

|[1/an-1/L|=]|(L - an)/(an L)| < epsilon |L|*2 /2 / (L * (|L|/2)) = epsilon. Done.

@ﬂ [ot %7 Mo %% \CV“\]
YN A
Al &v) e U,

(

[>M/L C@)L neo DL?/

—

| o, ferw, na.,

g(L& L ,b\J/H\V\,’, 043 b 0 L'LV‘ ,

YRt nnor ” L N el
604w ¢ 1 CARWATR

%5“%31} “DC: w0, él.bmzbn+\‘

(\’:M\ 1™ b -

°

W‘)

ntl L &

ntl €
c. 7

	Introduction: Mathematical Induction
	Big Boss: Reciprocals of Convergent Sequences
	The Mathematical Setup
	New Tools
	Strategic Approach
	Lean Solution
	Natural Language Proof
	Applications and Extensions

	By Cases: Case Analysis Without Hypotheses
	The by_cases Tactic
	Application: Eventually Greater than Half the Limit
	Lean Solution
	Natural Language Proof
	Importance

	Mathematical Induction
	The Principle of Mathematical Induction
	The induction' Tactic
	New Tool: ge_one_of_nonzero
	Example: Exponential Growth
	Lean Solution
	Natural Language Proof
	Applications
	Key Insight

