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1 Uniqueness of Limits

One of the fundamental properties of convergent sequences is that they con-
verge to a unique limit. This might seem obvious at first glance—after all,
how could a sequence be getting arbitrarily close to two different numbers?
But as with many intuitive facts in analysis, the rigorous proof requires care-
ful reasoning with our epsilon-N definitions.

The key to proving uniqueness is proof by contradiction. We’ll assume
a sequence converges to two different limits L and M , and show this leads
to an impossibility. The strategy involves choosing epsilon to be half the
distance between L and M , then showing the sequence can’t simultaneously
stay that close to both limits.

1.1 New Tools

1.1.1 Proof by Contradiction: by contra

The by_contra tactic allows us to prove a statement by assuming its nega-
tion and deriving a contradiction. The syntax is by_contra h, which adds
a hypothesis h containing the negation of the current goal and changes the
goal to false.
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1.1.2 Absolute Value Positivity: abs pos of nonzero

The theorem abs_pos_of_nonzero states that if x ̸= 0, then 0 < |x|. This is
essential for working with distances between distinct points.

1.2 The Mathematical Statement

Theorem: If a sequence a : N → R converges to both L and M , then
L = M .

1.3 Lean Solution

LimUnique (a : N → R) (L M : R) (aToL : SeqLim a L) (

aToM : SeqLim a M) :

L = M := by

by_contra h

have f0 : L - M ̸= 0 := by bound

have f1 : 0 < |L - M| := by apply abs_pos_of_nonzero f0

have f2 : 0 < |L - M| / 2 := by bound

specialize aToL (|L - M| / 2) f2

specialize aToM (|L - M| / 2) f2

choose N1 hN1 using aToL

choose N2 hN2 using aToM

have f3 : N1 ≤ N1 + N2 := by bound

have f4 : N2 ≤ N1 + N2 := by bound

specialize hN1 (N1 + N2) f3

specialize hN2 (N1 + N2) f4

have f5 : |L - M| = |(L - a (N1+N2)) + (a (N1 + N2) - M)

| := by ring_nf

have f6 : |(L - a (N1+N2)) + (a (N1 + N2) - M)| ≤
|(L - a (N1+N2))| + |(a (N1 + N2) - M)| := by apply

abs_add

have f7 : |(L - a (N1+N2))| = |-(a (N1+N2) - L)| := by

ring_nf

have f8 : |-(a (N1+N2) - L)| = |(a (N1+N2) - L)| := by

apply abs_neg

linarith [f5, f6, f7, f8, hN1 , hN2]
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1.4 Natural Language Proof

Proof: Suppose for contradiction that L ̸= M . Then L − M ̸= 0, so
|L−M | > 0, and therefore ε := |L−M |/2 > 0.

Since a(n) → L, there exists N1 such that |a(n)− L| < ε for all n ≥ N1.
Since a(n) → M , there exists N2 such that |a(n)−M | < ε for all n ≥ N2.

Let N = N1 + N2. Then for n = N , we have both |a(N) − L| < ε and
|a(N)−M | < ε.

Now observe that:

|L−M | = |(L− a(N)) + (a(N)−M)|

By the triangle inequality:

|L−M | ≤ |L−a(N)|+|a(N)−M | = |a(N)−L|+|a(N)−M | < ε+ε = |L−M |

This gives us |L − M | < |L − M |, which is a contradiction. Therefore,
L = M . QED

1.5 Why Uniqueness Matters

The uniqueness of limits is fundamental to the entire edifice of analysis. It
allows us to speak of ”the limit” of a sequence rather than ”a limit,” and
ensures that our notion of convergence is well-defined. Without uniqueness,
many standard theorems and techniques would fail or require substantial
modification.
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2 Eventually: Convergent Sequences Stay Near

Their Limits

When a sequence converges to a nonzero limit, it doesn’t just get arbitrarily
close to that limit—it eventually stays away from zero as well. This ”eventu-
ally bounded away from zero” property is crucial for many theorems involving
quotients and reciprocals.

The intuition is straightforward: if a sequence is converging to some
nonzero value L, then eventually the sequence terms must be at least half as
large (in absolute value) as L itself. They can’t simultaneously be approach-
ing L and shrinking toward zero.

2.1 The Mathematical Statement

Theorem: If a : N → R converges to L with L ̸= 0, then there exists N
such that for all n ≥ N , we have |a(n)| ≥ |L|/2.

2.2 Strategic Approach

The key is to use the convergence condition with ε = |L|/2. Since L ̸= 0, we
have |L| > 0, so this epsilon is positive. The convergence condition then tells
us that eventually |a(n)−L| < |L|/2, which by the reverse triangle inequality
implies |a(n)| is at least |L|/2.

2.3 Lean Solution

Statement EventuallyGeHalfLim (a : N → R) (L : R) (aToL

: SeqLim a L) (LneZero: L ̸= 0) :

∃ N, ∀ n ≥ N, |L| / 2 ≤ |a n| := by

specialize aToL (|L| / 2)

have : 0 < |L| := by apply abs_pos_of_nonzero LneZero

have : 0 < |L| / 2 := by bound

specialize aToL this

choose N hN using aToL

use N

intro n hn

specialize hN n hn

have l1 : |L| = |a n + (L - a n)| := by ring_nf
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have l2 : |a n + (L - a n)| ≤ |a n| + |L - a n| := by

apply abs_add

have l3 : |L - a n| = |-(a n - L)| := by ring_nf

have l4 : |-(a n - L)| = |(a n - L)| := by apply abs_neg

linarith [l1, l2, l3, l4, hN]

2.4 Natural Language Proof

Proof: Since L ̸= 0, we have |L| > 0, and therefore ε := |L|/2 > 0.
By convergence of a to L, there exists N such that |a(n)−L| < |L|/2 for

all n ≥ N .
For any n ≥ N , we have:

|L| = |a(n)+(L−a(n))| ≤ |a(n)|+|L−a(n)| = |a(n)|+|a(n)−L| < |a(n)|+ |L|
2

Rearranging gives:

|L| − |L|
2

< |a(n)|

Therefore |a(n)| > |L|/2, which gives us |a(n)| ≥ |L|/2. QED

2.5 Applications

This result is essential for proving that the reciprocal of a convergent sequence
(with nonzero limit) is itself convergent. It ensures the denominators don’t
approach zero, which would cause the reciprocals to blow up.
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3 Continuity of Absolute Value: Sequences

of Absolute Values

The absolute value function behaves extremely well with respect to limits—if
a sequence converges, then the sequence of absolute values converges to the
absolute value of the limit. This is a manifestation of the continuity of the
absolute value function.

The key property we’ll use is that absolute value is Lipschitz continuous
with constant 1, meaning ||x| − |y|| ≤ |x − y| for all real numbers x and
y. This inequality captures the idea that absolute value doesn’t increase
distances.

3.1 New Tools

3.1.1 Lipschitz Property: abs Lipschitz

The theorem abs_Lipschitz states that for any real numbers x and y, we have
||x| − |y|| ≤ |x− y|. This is sometimes called the reverse triangle inequality
for absolute values.

3.2 The Mathematical Statement

Theorem: If a : N → R converges to L, and b : N → R is defined by
b(n) = |a(n)| for all n, then b converges to |L|.

3.3 Lean Solution

Statement AbsLim (a : N → R) (L : R) (aToL : SeqLim a L)

(b : N → R) (bEqAbsa : ∀ n, b n = |a n|) :

SeqLim b |L| := by

intro ε hε
specialize aToL ε hε
choose N hN using aToL

use N

intro n hn

specialize hN n hn

specialize bEqAbsa n

rewrite [bEqAbsa]
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have : |(|a n|) - (|L|)| ≤ |a n - L| := by apply

abs_Lipschitz

bound

3.4 Natural Language Proof

Proof: Let ε > 0 be given. Since a(n) → L, there exists N such that
|a(n)− L| < ε for all n ≥ N .

For any n ≥ N , we have:

|b(n)− |L|| = ||a(n)| − |L|| ≤ |a(n)− L| < ε

where we used the Lipschitz property of absolute value in the inequality.
Therefore b(n) → |L|. QED

3.5 Why This Matters

This theorem is a special case of a much more general principle: contin-
uous functions preserve limits. The absolute value function is continuous
everywhere, so it maps convergent sequences to convergent sequences. This
principle extends to all continuous functions and is fundamental to mathe-
matical analysis.
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4 Reciprocals of Convergent Sequences

One of the most important limit theorems concerns reciprocals: if a sequence
converges to a nonzero limit, then the sequence of reciprocals converges to
the reciprocal of the limit. This result is crucial for proving theorems about
quotients and rational functions.

The proof combines several techniques we’ve developed: showing the se-
quence stays bounded away from zero (so reciprocals don’t blow up), carefully
manipulating algebraic expressions involving fractions, and using the triangle
inequality to control error terms.

4.1 New Tools

4.1.1 Absolute Value of Quotients: abs div

For any real numbers x and y (with y ̸= 0), we have |x/y| = |x|/|y|. This
allows us to separate absolute values across division.

4.1.2 Nonzero from Positive Absolute Value: nonzero of abs pos

If 0 < |x|, then x ̸= 0. This is useful for verifying that division is valid.

4.2 The Mathematical Statement

Theorem: If a : N → R converges to L with L ̸= 0, and b : N → R is
defined by b(n) = 1/a(n) for all n, then b converges to 1/L.

4.3 Strategic Approach

The challenge is that the expression |1/a(n)−1/L| involves reciprocals, which
can be difficult to bound directly. The key steps are:

1. Use the EventuallyGeHalfLim theorem to ensure |a(n)| ≥ |L|/2 even-
tually

2. Choose epsilon carefully: use ε · |L|2/2 when applying convergence of a
to L

3. Algebraically simplify: |1/a(n)− 1/L| = |(L− a(n))/(a(n) · L)|
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4. Separate the absolute value using abs div

5. Bound the denominator using our lower bound on |a(n)|

6. Use careful inequalities to show the result is less than ε

4.4 Lean Solution

Statement InvLim (a : N → R) (L : R) (aToL : SeqLim a L)

(LneZero : L ̸= 0) (b : N →
R) (bEqInva : ∀ n, b n = 1 / a n) :

SeqLim b (1 / L) := by

choose NhalfL hNhalfL using EventuallyGeHalfLim a L aToL

LneZero

intro ε hε
have : 0 < |L| := by apply abs_pos_of_nonzero LneZero

specialize aToL (ε * |L| * |L| / 2) (by bound)

choose Na hNa using aToL

use Na + NhalfL

intro n hn

specialize bEqInva n

rewrite [bEqInva]

have hnHalfL : NhalfL ≤ n := by bound

have hna : Na ≤ n := by bound

specialize hNhalfL n hnHalfL

specialize hNa n hna

have : 0 < |a n| := by bound

have : a n ̸= 0 := by apply nonzero_of_abs_pos this

have l1 : |1 / a n - 1 / L| = |(L - a n) / (a n * L)| :=

by field_simp

have l2 : |(L - a n) / (a n * L)| = |(L - a n)| / |(a

n * L)| := by apply abs_div

have l3 : |(L - a n)| / |(a n * L)| = |(L - a n)| / (|a

n| * |L|) := by bound

have l4 : |L - a n| = |-(a n - L)| := by ring_nf

have l5 : |-(a n - L)| = |(a n - L)| := by apply abs_neg

have l6 : |a n - L| / (|a n| * |L|) < (ε * |L| * |L| /

2) / (|a n| * |L|) := by field_simp; nlinarith

have l10 : |(L - a n)| / (|a n| * |L|) = |-(a n - L)| /

(|a n| * |L|) := by rewrite [l4]; rfl
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have l11 : |-(a n - L)| / (|a n| * |L|) = |(a n - L)| /

(|a n| * |L|) := by rewrite [l5]; rfl

have l13 : ε * |L| * |L| / 2 / (|a n| * |L|) = ε * |L| /

2 / |a n| := by field_simp

have l14 : ε * |L| / 2 / |a n| ≤ ε := by field_simp;

bound

linarith [l1, l2, l3, l10 , l11 , l6, l13 , l14]

4.5 Natural Language Proof

Proof: Let ε > 0 be given. Since L ̸= 0, by the EventuallyGeHalfLim
theorem, there exists N1 such that |a(n)| ≥ |L|/2 for all n ≥ N1.

Since |L| > 0, we have ε · |L|2/2 > 0. By convergence of a to L, there
exists N2 such that |a(n)− L| < ε · |L|2/2 for all n ≥ N2.

Let N = N1 + N2. For any n ≥ N , we have |a(n)| ≥ |L|/2 > 0, so
a(n) ̸= 0 and b(n) = 1/a(n) is well-defined.

Now:

|b(n)− 1/L| = |1/a(n)− 1/L|

=

∣∣∣∣L− a(n)

a(n) · L

∣∣∣∣
=

|L− a(n)|
|a(n)| · |L|

=
|a(n)− L|
|a(n)| · |L|

<
ε · |L|2/2
|a(n)| · |L|

≤ ε · |L|2/2
(|L|/2) · |L|

=
ε · |L|2/2
|L|2/2

= ε

Therefore b(n) → 1/L. QED
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4.6 Congratulations, Big Boss Defeated!

You’ve just completed one of the most challenging proofs in elementary anal-
ysis! The reciprocal limit theorem is a major milestone—you’ve proven that
reciprocals preserve convergence (when the limit is nonzero).

4.7 What You Accomplished

This proof required you to orchestrate multiple sophisticated techniques:

• Using EventuallyGeHalfLim to ensure denominators stay bounded away
from zero

• Choosing a carefully calibrated epsilon (ε · |L|2/2) to make the algebra
work

• Manipulating complex fractional expressions with common denomina-
tors

• Applying abs_div to separate absolute values across division

• Chaining together a sequence of inequalities to reach the final bound

Each step built on the previous levels, showing how mathematical proofs
are constructed from carefully assembled building blocks.

4.8 Applications and Extensions

With this theorem in hand, you now have a complete toolkit for limits of
rational functions. Combined with earlier results on sums and products,
you can now prove:

If a(n) → L and c(n) → M with M ̸= 0, then a(n)/c(n) → L/M .
The proof is straightforward: first show 1/c(n) → 1/M using the re-

ciprocal theorem you just proved, then use the product theorem to show
a(n) · (1/c(n)) → L · (1/M) = L/M .

This completes the fundamental arithmetic of limits: sums, products, and
quotients. These are the building blocks for analyzing limits of polynomials,
rational functions, and much more complex expressions throughout calculus
and analysis.
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4.9 Mastery of Technique

The reciprocal theorem showcases a crucial lesson in mathematical proof:
sometimes the “right” epsilon isn’t the obvious choice. The expression ε ·
|L|2/2 might seem mysterious at first, but it’s precisely engineered to make
the final inequalities work out. This kind of strategic thinking—working
backwards from what you need to figure out what you should assume—is at
the heart of mathematical problem-solving.

You’ve now mastered the essential techniques for proving limit theorems.
Well done!
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