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1 Big Boss: The Sum of Convergent Sequences

One of the most fundamental ideas in analysis is that 'nice operations pre-
serve convergence.” If two sequences each converge, then their sum also
converges, and converges to the sum of their limits.

This might seem obvious at first — after all, if a(n) is getting close to L and
b(n) is getting close to M, shouldn’t a(n)—+b(n) get close to L+M? While the
intuition is correct, making this rigorous requires some clever maneuvering
with our epsilon-N definition.

Here’s the key insight: if an engineer demands that our combined output
be within € of the target L + M, we can’t just demand that each factory
independently meet the full tolerance €. Instead, we need to be clever about
how we allocate our ’tolerance budget.’

Think of it this way: if the first factory can guarantee its output is within
£/2 of L, and the second factory can guarantee its output is within /2 of M,
then by the triangle inequality, their sum will be within € of L + M. This is
the heart of the proof!



1.1

The Mathematical Setup

Suppose we have:

e A sequence a : N — R that converges to L

e A sequence b: N — R that converges to M

e A sequence ¢ : N — R with the property that ¢(n) = a(n) + b(n) for

all n

We want to prove that ¢ converges to L + M.

1.2

1.

1.3

Strategic Approach

Start by unfolding the definitions of convergence in the goal and hy-
potheses

Given any € > 0, use the convergence of a to get an N, that works for
e/2

. Similarly, use the convergence of b to get an N, that works for £/2

Take N = N, + N, (ensuring both conditions are satisfied)

Use the triangle inequality to combine the two half-tolerances

Lean Solution

Statement SumLim (a b ¢ : N—R) (L M : R)

(ha : Seqlim a L) (hb : Seqlim b M) (hc : V n, ¢ n =
an+ b n)
Seqlim c¢ (L + M)

by

change V ¢ > 0, 3 N : N, Vn >N, |lcn - (L + M| < ¢
intro € he
unfold Seqlim at ha

change V ¢; > 0, 94 Na : N, V n

v

Na, |la n - L| < g1 at
ha

change V €9 > 0, 3 Nb : N, V.n > Nb, |bn - M| < g9 at

hb

specialize ha (e / 2)



specialize hb (e / 2)

have eps_on_2_pos : 0 < ¢ / 2 := by linarith [he]

specialize ha eps_on_2_pos

specialize hb eps_on_2_pos

choose Na hNa using ha

choose Nb hNb using hb

use Na + Nb

intro n hn

specialize hc n

rewrite [hc]

have thing : an + bn - (L + M) = (an -1L) + (bn -
M) := by ring_nf

rewrite [thing]

specialize hNa n

specialize hNb n

have ineq_a : Na < n := by bound

have ineq_b : Nb < n := by bound

specialize hNa ineq_a

specialize hNb ineq_b

have ineq : lan - L + (bn - M| < |an-L| + [(bn
- M)| := by apply abs_add

bound

1.4 Natural Language Proof

Theorem: If two sequences of real numbers converge to their respective lim-
its, then the sequence formed by adding corresponding terms also converges,
and its limit is the sum of the original limits.

Proof: Suppose sequences a(n) and b(n) converge to L and M respec-
tively, and we want to show that ¢(n) = a(n) + b(n) converges to L + M.

By definition, we need to show that for any tolerance € > 0, we can find
a point N such that for all n > N, we have |¢(n) — (L + M)| < e.

Since a(n) converges to L, we can find N; such that |a(n)—L| < ¢/2 for all
n > Nj. Since b(n) converges to M, we can find N, such that [b(n)—M| < /2
for all n > Ns.

Let N = Ny + N,. Then for any n > N:

le(n) = (L + M)[ = [(a(n) +b(n)) — (L + M)| = |(a(n) — L) + (b(n) — M)
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By the triangle inequality, this is at most:
€

5~ ¢

la(n) — L| + |b(n) — M| < g +

Therefore, ¢(n) converges to L + M. QED



2 Split Ands: Breaking Down Complex (Goals

Mathematical proofs often require us to establish multiple related facts simul-
taneously. When your goal involves proving multiple statements connected
by "and” (A), the split_ands tactic becomes invaluable.

Think of split_ands as a way to break down a complex manufacturing
specification into individual quality checks. Instead of trying to verify that
a product meets three different standards all at once, we can tackle each
standard separately and systematically.

2.1 New Tools

The split_ands tactic breaks apart "and” goals into individual pieces. If
your goal is hy A ho A hg, then calling split_ands will break that into three
separate goals: first hy, then ho, and finally hs.

2.2 Example

Statement (x y : R) (hx : x = 2) (hy : y = 3)
x =2 ANy =3 := by

split_ands

apply hx

apply hy

The split_ands tactic might seem simple, but it’s incredibly powerful for
organizing complex proofs. Many important mathematical theorems have
conclusions that are conjunctions—statements of the form ”A and B and
C”. Being able to break these down systematically makes proofs much more
manageable and readable.



3 Left and Right: Making Choices in Math-
ematics

After mastering split_ands to handle situations where we need to prove
multiple things simultaneously, we now turn to a fundamentally different
scenario: proving that at least one of several possibilities is true. This is the
world of "or” statements (V).

While split_ands was about being comprehensive—proving every part
of a conjunction—proving an "or” statement (disjunction) is about making
a strategic choice. When faced with proving "P or Q,” you don’t need to
prove both P and (). You just need to prove one of them!

3.1 New Tools

When your goal is to prove an ”or” statement, P V @), you can do that by
proving either P or Q:

e If you want to prove P, then say left, and the goal will turn into P

e If you want to prove @), then say right, and the goal will turn into ¢)

3.2 Example

Statement (x y : R) (hx : x = 2) (hy : y = 3)
x =3V y=23 :=by

right

apply hy

"Or” statements are everywhere in mathematics. Existence proofs often
have this flavor, and being able to choose the right branch can dramatically
simplify your proof strategy.



4 Dot Notation: Accessing Parts of Complex
Information

Often in mathematics, you'll be given a hypothesis that contains multiple
pieces of information bundled together. For instance, you might know that
"x = 2 AND y = 3” but only need the fact that "y = 3” for your current
goal. Lean provides an elegant shorthand: dot notation.

4.1 Dot Notation Rules

When you have a hypothesish : P AQ, you can access:
e The first part with h.1 (which gives you P)
e The second part with h.2 (which gives you Q)

For longer conjunctions like P A Q A R, note that h.1 gives P, but h.2
gives Q A R due to hidden parentheses: PAQAR=PA(QAR). To get Q
alone, use h.2.1, and for R, use h.2.2.

4.2 Example

Statement (x y : R) (h : x = 2 Ay = 3)
y = 3 := by
apply h.2

Dot notation is essential for maintaining clarity in complex proofs where
multiple conditions or properties are bundled together.



5 Cases’: Handling All Possibilities

When you have a hypothesis like h : P vQ, you know that either P is true
or () is true, but you don’t know which one. To proceed with your proof, you
need to consider both possibilities systematically. The cases’ tactic does
exactly this.

5.1 The Cases’ Tactic

When you have a hypothesis h : P VvQ, you can say cases’ h with hl h2.
This creates two separate goals:

e In the first goal, you get a new hypothesis h1 : P

e In the second goal, you get a new hypothesis h2 : Q

You must solve both goals to complete your proof, ensuring you've covered
all logical possibilities.

5.2 Example

Statement (x y : R) (h : x = 2 V y = 3)
(x - 2) x (y - 3) =0 by

cases’ h with hl h2

rewrite [hi1]

ring_nf

rewrite [h2]

ring_nf

5.3 The Complete And/Or Toolkit

You now have the complete And/Or matrix:

N vV
Goal split_ands | left/right
Hypothesis | h.1, h.2 cases’

Case analysis is everywhere in mathematics, from proving that every in-
teger is either even or odd, to showing that continuous functions on closed
intervals achieve their extrema.



6 AbsLt: Working with Absolute Values in
Convergence

Working with absolute values is fundamental in real analysis, especially in the
context of sequence convergence. Sometimes we need to extract more specific
information from absolute value conditions, such as directional bounds.

6.1 The abs_1t Theorem

The abs_1t theorem states that |z| < y if and only if —y < x Az < y. This
allows you to convert between absolute value inequalities and conjunctions
of regular inequalities, making them easier to work with in proofs.

The key insight is that |z| < y captures the idea that x is within distance
y of zero, which means x lies in the interval (—y,y).

6.2 Example Application

Statement (a : N—R) (L : R) (ha : Seqlim a L)
4N, Vn>N, an>L -1 := by

specialize ha 1 (by bound)

choose N hN using ha

use N

intro n hn

specialize hN n hn

rewrite [abs_1t] at hN

have : -1 < an - L := by apply hN.1

bound

This proof demonstrates extracting a lower bound from a convergence
condition. We showed that any convergent sequence is eventually bounded
below (relative to its limit), which is a building block for many major theo-
rems.



7 Big Boss: Squeeze Theorem

The Squeeze Theorem (also known as the Sandwich Theorem or Pinching
Theorem) beautifully captures the intuitive idea that if you trap a sequence
between two other sequences that both converge to the same limit, then the
trapped sequence must also converge to that limit.

7.1 The Intuitive Picture

Imagine three runners on a track. Runner A and Runner C are both heading
to the same finish line L, and Runner B is always between them. No matter
how A and C weave back and forth, as long as they both end up at L and B
stays between them, B must also end up at L. There’s simply nowhere else
for B to go!

7.2 The Mathematical Statement

Squeeze Theorem: If a,c: N — R both converge to L, and b is another
sequence squeezed between a and ¢ (i.e., a(n) < b(n) < ¢(n) for all n), then
b also converges to L.

7.3 Lean Proof

Statement SqueezeThm (a b ¢ : N—R) (L : R) (aTol
SeqLim a L)

(cToL : Seqlim ¢ L) (aleb : V n, a n < b n) (bLec : V n,

b n<c n)

SeqLim b L := by

intro ¢ he

specialize aTol ¢ he

specialize cToL ¢ he

choose Na hNa using aTol

choose Nc hNc using cTol

use Na + Nc

intro n hn

have hna : Na by bound

n
n by bound

IAIA

have hnc : Nc
specialize hNa n hna
specialize hNc n hnc
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rewrite [abs_1t] at hNa
rewrite [abs_1t] at hNc
rewrite [abs_1t]
split_ands

specialize aleb n

bound

specialize blLec n

bound

7.4 Natural Language Proof

Proof: Given any € > 0, we need to show that |b(n) — L| < ¢ for sufficiently
large n.

Since a(n) — L, there exists N, such that |a(n) — L| < € for all n > N,.
Since ¢(n) — L, there exists NV, such that |c¢(n) — L| < ¢ for all n > N.,.

Let N = N, + N.. For any n > N, we have:

L—¢e<a(n)<bn)<c(n)<L+e (1)

Therefore, L — e < b(n) < L + e, which means |[b(n) — L| < ¢. Hence
b(n) — L. QED
7.5 Applications

The Squeeze Theorem is a workhorse of mathematical analysis, used to prove
challenging convergence results by reducing them to easier problems. Exam-
ples include:

e sin(1/n) — 0 (squeezed between —1/n and 1/n)
e Recursive sequences where exact formulas are intractable
e Sequences defined by complex geometric or probabilistic processes

The theorem demonstrates the power of combining multiple techniques:
epsilon-N arguments, absolute value manipulation, logical decomposition,
and inequality reasoning. This synthesis of tools is what makes advanced
mathematical proof possible.
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