An Introduction to Formal Real
Analysis, Rutgers University, Fall
2025, Math 311H

Lecture 3: More fun with Sequences

Prof. Alex Kontorovich

This text is automatically generated by LLM from
“Real Analysis, The Game”, Lecture 3

1 More on sequences

In Lecture 2, we learned the definition of a sequence a : N—R converging

to a limit L: for any tolerance € > 0, there exists a time N, so that, for any

point after that time, n >N, we are within the tolerance, la n - L| < ¢.
We also learned how to do something completely trivial with it, namely,

show that the constant sequence converges, with that constant as its limit.
Let’s step it up a notch, shall we?

2 Level 1: The Archimedean Property

The so-called Archimedean Property (which I think is originally due to Eu-
doxus, and appears already in Euclid’s Elements Book V) is a fundamental
property of the real numbers that captures the intuitive notion that there
are no “infinitely large” or “infinitesimally small” positive real numbers.

More precisely, it states that no matter how small ¢ > 0 is, there is always
a natural number N so that 1 / N is even smaller than ¢ (and of course
positive). Equivalently, we can state it as: for any positive real number e,
there exists a natural number N such that 1 / < N.

Why does this matter? The Archimedean Property is one of the most
fundamental properties distinguishing the real numbers from other number
systems. Without it, we could have “infinitely large” or “infinitesimally
small” positive numbers, which would break most of calculus and analysis.

Our goal will be to prove the following:

Theorem (ArchProp): For any € : R with 0 < ¢, there exists N : N
such that 1 / e < N.

This is mathematically “obvious” to most people—if you have a positive
number e, no matter how small, you can always find a natural number large
enough that 1 / ¢ is smaller than it. But how do you actually formalize this
in Lean?

2.1 The Natural Language Proof Strategy

First, let’s think about this in natural language. The key insight is that we
need to provide a specific natural number N that works.

A natural choice would be to use something related to the ceiling func-
tion. The ceiling function x + [x] rounds any real number up to the nearest
integer. However, there’s a subtle issue here: the standard ceiling function
takes values in integers Z, but we need values in N (the natural numbers).
These are not the same thing!!

Fortunately, Lean provides the “natural number ceiling function” written
x +[x]4, which takes any real number and returns a natural number. (You
can write these symbols using \1lceil, \rceil, and _+. Or if you're lazy
like me, just copy and paste them from elsewhere.) For negative inputs, this
function returns 0. For example, [-3.14],= 0 and [3.14] = 4.

Now our strategy becomes clear:

e Choice of N: Use N = [1 /]+ 1

e Why this works: We have the “key inequality”: 1 / e <[1 / €],
which holds by the definition of the ceiling function

e Getting strict inequality: Adding 1 givesus 1 / e< [1 / e]4+ 1

2.2 The Lean Implementation Challenges

In Lean, the first two steps of our natural language proof work fine, but
then we encounter the issue of type coercion (“casting” between different
number types). We'll discuss this in more detail later, but again it has to do
with the fact that N, Z, Q, and R are all different kinds of things, and we need
to be able to move numbers up the “sophistication” heirarchy, with natural
numbers being the simplest objects and the reals being the most complicated
(so much so that we keep postponing their construction).

For example, notice that when we’ll write our have statement to establish
the key inequality:

have fact : 1 / e<[1 / ¢]|4+:= by WhateverTheProofIs

Lean will record it as:

fact : 1 / e<T[1 / €]+

Notice the mysterious up arrow 1. This represents a coercion function
from natural numbers to real numbers:

T : N—R

This is because N, Z, Q, and R are all different types in Lean’s type
system (and really, in mathematics, as we’ll see when we construct the real
numbers)! Even though we think of natural numbers as being “contained” in
the real numbers, formally they are distinct types of things, and Lean needs
explicit coercion functions to convert between them.

Think of it this way: the natural number 3 : N and the fraction 3 / 1

: Q and the real number 3.000 : R are different objects that just happen

to represent the same mathematical value.

The push_cast tactic helps manage these coercions, kind of like ring_nf
but for casting instead of ring operations.

2.3 New Tools You’ll Need

e [-]+: The natural number ceiling function

e push_cast: Tactic that handles coercions between number types

e bound: Solves many routine inequalities

The bound tactic can solve many “trivial” inequalities once the types are
properly aligned.

2.4 Hint:
If you get stuck and don’t see a Hint, try backtracking until you do.

2.5 Lean Proof

Statement ArchProp {e : R} (he : 0 < ¢)
4 (N : ND, 1/ e <N := by
use [1 /]+ + 1
have fact : 1 / ¢ < [1 / €]+ := by bound
push_cast
bound

2.6 Natural Language Version

Let’s compare now to the purely natural language proof:

2.6.1 Natural Language Proof of the Archimedean Property

Theorem: For any positive real number ¢ > 0, there exists a natural number
N such that 1 / e< N.

Proof: Let ¢ > 0 be given. We need to find a natural number N such
that 1 / e< N.

Use the value N = [1 / |4+ 1, where [-]; denotes the natural number
ceiling function.

Since ¢ > 0, we have 1 / > 0. By the definition of the natural number
ceiling function, we know that:

1/ ¢e< (1 / €-|+

Now, since [1 /]y is a natural number and N = [1 / ¢]|4+ 1, we have:

1/ e|l4< 1/ ely+1 =N

Combining these inequalities, we get that:

1/ e<[1/ e|l4< N

Therefore, 1 / € < N, which completes the proof.

4

Significance: The Archimedean Property is fundamental to analysis be-
cause it ensures that the real numbers have no “infinite” or “infinitesimal”
elements. It guarantees that we can always find natural numbers large enough
to dominate any given positive real number when we take their reciprocals.
This property is essential for many limit processes and is equivalent to the
completeness of the real numbers in certain formulations of real analysis.

2.7 Review of Common Pitfalls

e Don’t use the regular ceiling function [-] - it returns integers, not
natural numbers!

e Watch out for casting issues - if bound isn’t working, try push_cast
first

e The addition [1 / e]4+ 1 happens in N, then gets cast to R - this is
why we need push_cast

Historical Note: While often attributed to Archimedes (c. 287-212
BCE), this property was likely known to Eudoxus (c. 408-355 BCE) and
appears in Euclid’s Elements. Archimedes used a version of this principle in
his method of exhaustion, particularly in calculating areas and volumes by
approximating them with polygons of increasing numbers of sides.

3 Level 2: Our First Real Limit

Congratulations! You’ve just proved the Archimedean Property. Now let’s
use it to prove something genuinely interesting: our first non-trivial limit.

3.1 The Goal: Proving that 1 / n —o0

We want to prove that the sequence a(n) = 1 / n converges to 0 as n ap-
proaches infinity. This is intuitively obvious—as n gets larger, 1 / n gets
smaller and approaches 0. But how do we make this rigorous using the e-N
definition of limits?

Theorem: The sequence a(n) = 1 / n converges to 0.

This might seem straightforward, but let’s see it as a test of the definition.

3.2 Recall: The Definition of Sequential Convergence

A sequence a : N—R converges to a limit L (written SeqLim a L) if:
For every e > 0, there exists N : N such that for alln >N, la(n) - L| < ¢
In formal notation: Ve > 0, 3N, Vn >N, la(n)- L| < ¢
For our specific case with a(n) = 1 / n and L = 0, this becomes: V¢ >
0, IN, Vo >N, |1/ n - 0] < ¢

3.3 The Natural Language Proof Strategy

Here’s how we’ll prove this step by step:

Step 1: Let ¢ > 0 be given. (This will correspond to intro ¢he)

Step 2: We need to find N such that for alln >N, we have 1 / n < e.

Key insight: Weneed 1 / n < ¢, which is equivalent to 1 / & < n (since
both sides are positive). So we need n to be larger than 1 / . When our
Engineer requests the tolerance of ¢ = 1/100, the Machinist replies, ok, I can
do that, but I'll need N = 1 / e= 100 days in my factory.

Step 3: That’s exactly why we developed the Archimedean Property! It
tells us that there exists some natural number N such that 1 / e < N. Rather
than reproving that from scratch, we can simply quote this fact; then we’ll
choose such an N and use it.

Step 4: Now let n >N be given. We have:

e 1 / < N (by our choice of N)

e N <n (by assumption)
e Therefore: 1 / e< N <n,s01 / €< n
e Taking reciprocals (and flipping the inequality): 1 / n < ¢

Step 5: Since |11 / n -0l =11/ nl =1/ n < ¢, we're done!

3.4 The Lean Implementation Challenges
3.4.1 Challenge 1: Cross-Multiplying Fractions

Our key step is showing that 1 / n < e. In paper mathematics, we’d simply
cross-multiply to get 1 < n * . But Lean is very careful about division by
zero, so we can’t just cross-multiply willy-nilly.

The Problem: We want to go from 1 / n < eto 1 < n * ¢, but this is
only valid if n > 0 and ¢ > 0.

Solution: The field_simp tactic handles this automatically! It will clear
denominators by cross-multiplying, but only after it can verify that all de-
nominators are positive (or at least non-zero).

3.4.2 Challenge 2: Linear Arithmetic

Once we've cleared the fractions, we need to combine various inequalities

like:
e 1 / < N (from the Archimedean Property)
e N <n (our assumption)
e 1 < n * ¢ (our goal after clearing denominators)

For some reason, the bound tactic doesn’t always handle these linear com-
binations well, especially when they involve multiplication by variables.

Solution: The linarith tactic is specifically designed for linear arith-
metic. It can take a list of hypotheses and solve goals that follow from linear
combinations of those hypotheses.

3.4.3 Challenge 3: Explicit Type Casting

Remember those mysterious up arrows 1 from the last level? They’re back!
When we write 1 / n, Lean sees this as 1 / |n where n starts as a natural
number but needs to be cast as a real number.

Sometimes we have to be specific about what type of casting to use. The
expression 1 / Tn could be ambiguous—are we casting to integers, rationals,
reals, or something else?

Solution: Instead of an up arrow, we can specify the casting explicitly
with this syntax: (a : R). This tells Lean exactly what type we want to
cast n to, in this case, the reals. This eliminates ambiguity and makes your
proofs more precise.

3.4.4 Challenge 4: Casting in Tactic Applications

Sometimes you want to apply a tactic or theorem, but the types don’t quite
match because of casting issues. For example, you might have the hypothesis
that N <n where n, N are naturals, but bound or linarith are searching for
a proof that (N : R)<(n : R) as reals.
Solution: The exact_mod_cast tactic is like apply, but it automatically
handles the type coercions for you. If you're trying to prove (N : R)<(n
: R), and you have the hypothesis h : N <n (as naturals), then you can
write: exact_mod_cast h. Lean will look at h and realize, oh it’s exactly
what you're trying to prove, but just cast to a different number system; and
it’ll figure out the proof from there.

3.5 New Tools You’ll Need

e field_simp: Clears denominators by cross-multiplying, but only when
it can prove the denominators are non-zero. This is the key to handling
fractional inequalities safely.

e Arithmetic with inequalities: You might also find the linarith
tactic helpful. It is a very powerful, general tactic like ring_nf, but
instead of proving algebraic identities, it proves inequalities involving
“linear arithmetic” on the specified hypotheses. For example, if you
have as hypotheses: hy : X <Y, hy : 2 *x Y <Z, and your Goal is to
prove that 2 * X <Z, then simply calling linarith [h;, hy] will do
the trick. So add as many inequality hypotheses to your Game Board

3.6

A

3.7

as you may need, and then call linarith on them to prove a Goal. I
find that 1inarith is best called at the very end, when you’ve assembled
all your facts and are ready to close a Goal (but it has many other uses
as well, as you'll see).

Explicit casting (n : R): Tells Lean exactly what type to use, elimi-
nating ambiguity in expressions like 1 / n. You only need to cast once
in any expression, and Lean will automatically cast everything else.
For example, you can say (0 : R)< N, and Lean will figure out that
the 0 you mean is a real number, and so, to compare that with N, the
latter too must be cast to the reals.

exact_mod_cast: Automatically handles type coercions between differ-
ent number types (N, Z, Q, R), when the Goal is ezactly what you're
trying to prove, just needs to get coerced.

Pro Tips for This Level
Use change to convert SeqLim a 0 to its definition
Apply the Archimedean Property to get the existence of an N
Use choose to extract the N from the existential statement
Establish positivity first before using field_simp

Work step by step - don’t try to do everything at once!

What Makes This Non-Trivial?

Unlike the constant sequence (which was essentially definitional), this proof
requires:

e The Archimedean Property to find a suitable N

e Careful type management between N and R

e Positivity arguments to handle division

e Inequality manipulation to connect our bounds

This is a perfect example of how even “obvious” mathematical facts re-
quire sophisticated machinery to prove rigorously!

9

3.8 Lean Proof

Statement OneOverNLimZero (a : N—R) (ha : V n, an = 1
/ n)
Seqlim a 0 := by
change V ¢ > 0, 3 N, YV n >N, |lan - 0] < ¢
intro € he

have f1 : 3 (N : N), 1 / &€ < N := by apply ArchProp he
choose N eps_inv_1t_N using f1

use N

intro n n_ge_N

ring_nf

specialize ha n
rewrite [ha]

have f2 : |1 / (n : R)| =1 / n := by bound

rewrite [f2]

have f3 : 0 < 1 / ¢ := by bound

have Npos : (0 : R) < N := by linarith [£3,
eps_inv_1t_N]

have N_le_n : (N : R) < n := by exact_mod_cast n_ge_N

have npos : (0 : R) < n := by linarith [Npos, N_le_n]

field_simp

field_simp at eps_inv_1t_N

have f4 : N * ¢ < n * £ := by bound

linarith [eps_inv_1t_N, f£f4]

3.9 Natural Language

As usual, compare to what’s written in textbooks:

3.9.1 Natural Language Proof of 1 / n —0

Theorem: The sequence a(n) = 1 / n converges to 0.

Proof: Let ¢ > 0 be given. We need to find N : N such that for alln >N,
we have [1 / n - 0] < e.

Since € > 0, we have 1 / ¢> 0. By the Archimedean Property, there
exists a natural number N such that 1 / e < N. We choose this value of N,
and use it.

Now let n >N be given. We need to show that |1 / n| < e.

10

Since 1 / e< Nand N <n, we have that 1 / < n. Since both 1 / ¢ and
n are positive, taking reciprocals reverses the inequality: 1 / n < e.
Therefore, |1 / n - 0l = |1 / nl =1 / n < g, which completes the proof.

3.10 What We Just Accomplished

This proof demonstrates several key concepts:

1. The power of the Archimedean Property: Without it, we couldn’t
guarantee the existence of a suitable N.

2. The e-N definition in action: We explicitly constructed N in terms of ¢,
showing the quantifier structure Ve, =N, Vn.

3. Rigorous inequality manipulation: What seems “obvious” requires
careful attention to positivity and type casting.

4. The bridge between intuition and formality: The intuitive idea
that “1 / n gets arbitrarily small” becomes a precise mathematical
statement.

11

	More on sequences
	Level 1: The Archimedean Property
	The Natural Language Proof Strategy
	The Lean Implementation Challenges
	New Tools You'll Need
	Hint:
	Lean Proof
	Natural Language Version
	Natural Language Proof of the Archimedean Property

	Review of Common Pitfalls

	Level 2: Our First Real Limit
	The Goal: Proving that 1 / n → 0
	Recall: The Definition of Sequential Convergence
	Lean Proof
	The Natural Language Proof Strategy
	The Lean Implementation Challenges
	Challenge 1: Cross-Multiplying Fractions
	Challenge 2: Linear Arithmetic
	Challenge 3: Explicit Type Casting
	Challenge 4: Casting in Tactic Applications

	New Tools You'll Need
	Pro Tips for This Level
	What Makes This Non-Trivial?
	Natural Language Proof of 1 / n → 0
	What We Just Accomplished

