An Introduction to Formal Real
Analysis, Rutgers University, Fall
2025, Math 311H

Lecture 22: Uniformity

Prof. Alex Kontorovich

This text is automatically generated by LLM from
“Real Analysis, The Game”, Lecture 22

SOCRATES: I just noticed something about that last level.
SIMPLICIO: Ugh. Ok, what was it?

SOCRATES: I don’t know, you tell me.

SIMPLICIO: We proved that 22 — 1 was continuous everywhere. So what?
SOCRATES: Right. How did we do it? What ¢ did we choose, once ¢ was
given?

SIMPLICIO: Are you getting senile, old man? We chose § = ¢/(2|z| + 1).
SOCRATES: Anything interesting about that?

SIMPLICIO: What, that it has an x in it? So what? We had no other
choice but to choose ¢ depending on x. We took y near z, |y — x| < §, and
computed that |f(y) — f(z)| was |y — x| - |y + z|. The first factor is good,
since it’s less than ¢§; in the second factor, since y is near z, then |y + x| has
size about 2 - |z|, and we added one just to be safe.

SOCRATES: Ok, let’s put a pin in this and come back to it later. Here’s a
question: suppose I have a sequence of continuous functions f,, and suppose
fn converges to some limit function F'. That is, for every z, the sequence of
real numbers n — f,(z) converges to F'(x). What can you tell me about F'?

SIMPLICIO: Is F' continuous? Wait, I've fallen into this trap before. I
even remember my counterexample from Lecture 1: Just take f,(z) = 2™ on
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[0,1]. Each f, is continuous, but the limiting function is discontinuous at
r=1.

SOCRATES: Exactly! So mere pointwise convergence isn’t enough. But
let’s pretend that it was and see what goes wrong with our proof of continuity.
SIMPLICIO: Ok, so you want me to try (and fail) to prove that F' is
continuous at some point x. Given € > 0, we need to find 6 > 0 such that
for all y with |y — x| < 6§, we have |F(y) — F(z)| < e.

SOCRATES: Right. Go on.

SIMPLICIO: Since f, converges to F' pointwise, for our given x and ¢, we
can find some big enough N such that for all n > N, we have | f,,(x)— F(x)| <
e/3.

SOCRATES: Yes. And?

SIMPLICIO: Now, since fy is continuous at x, we can find some 6 > 0
such that for all y with |y — x| < 0, we have |fy(y) — fn(z)| < /3.
SOCRATES: Good so far. Now, what would you like to do next?
SIMPLICIO: Well, I want to show that |F(y) — F(x)| < ¢ for y close to x.
I can use the triangle inequality: |F(y) — F(x)| < |F(y) — fn(y)| + | fn(y) —
In(@)| + 1 fn(x) = F(z)].

SOCRATES: Excellent! And what can you say about each of these three
terms?

SIMPLICIO: Well, the middle term is less than /3 by our choice of §. The
last term is less than /3 by our choice of N. So if I can make the first term
less than €/3, I'm donel!

SOCRATES: And can you?

SIMPLICIO: Hmm... I need |F(y) — fn(y)| < £/3. Since f,, converges to
F at the point y, I can find some M (which might depend on y) such that
for n > M, we have |f,(y) — F(y)| < /3. Uh oh...

SOCRATES: What’s the problem?

SIMPLICIO: The problem is that my N was chosen to work at the specific
point x, but now I need it to work at this other point y too! And y could

be any point near x, so I'd need N to work at all of these points near x
simultaneously.

SOCRATES: Yeah, so what? No matter which y you pick, you can always
find some M that works for that y.



SIMPLICIO: But that’s exactly the problem! The M I find depends on
which y I'm looking at. For one y, I might need M = 100. For another
y nearby, I might need M = 1000. And for yet another y, I might need
M = 10000.

SOCRATES: So?

SIMPLICIO: So my original N was fixed at the beginning - it only depends
on r and £. But now I need this same fixed N to work for all possible values
of y near x. There’s no guarantee that my fixed N is bigger than all the
different M’s I'd need for different 3’s!

SOCRATES: Ah, I see. So you're saying that even though f,(y) — F(y) for
each individual y, there might not be a single N that makes the convergence
happen “fast enough” simultaneously for all y in a neighborhood?
SIMPLICIO: Exactly! The convergence might be happening at wildly dif-
ferent rates at different points. At some points it might converge quickly, at
others very slowly.

SOCRATES: Interesting. So what kind of convergence would you need to
make this proof work?

SIMPLICIO: I'd need the convergence to be... uniform over the whole
space? Or at least uniform over neighborhoods? So that I can find a single
N that works for all points at once, not just point by point.

SOCRATES: Precisely! You've just discovered why we need the concept of
uniform convergence. Shall we make this precise?

SIMPLICIO: Yes! What exactly do we mean by “uniform convergence”?
SOCRATES: You tell me.

SIMPLICIO: Well, I said that I need a single N that works for all points at
once. So instead of saying “for each y, there exists M such that for n > M,
we have |f,(y) — F(y)| < /37, I need to say “there exists N such that for
all y and all n > N, we have |f,(y) — F(y)| < &/3”.

SOCRATES: Exactly! So uniform convergence means: for every € > 0,
there exists N such that for all n > N and for all z in our domain, we have
|[fu(z) — F(z)] <e.

SIMPLICIO: Got it! The key difference is the order of quantifiers. In
pointwise convergence, we have “for all z, there exists N” - the N can depend
on z. In uniform convergence, we have “there exists N such that for all 2”7 -
the same N must work for every point.



SOCRATES: Perfect! This is ezactly what Cauchy got wrong in his first
attempt at proving that limits of continuous functions were continuous; he
was missing uniformity! Ready to work on the proof?

SIMPLICIO: Yes, let’s do it!



Level 1: Continuous Composition

Some things with continuous functions are easy. (Some things are not; see
the next level!)

The Result

Theorem (Cont_Comp): The composition of continuous functions is contin-
uous.

If f:R—Randg: R — R are both continuous functions, then their
composition f o g is also continuous.

The Intuition

This result makes intuitive sense: if ¢ is continuous at a point x, then small
changes in = produce small changes in g(x). Similarly, if f is continuous at
g(x), then small changes in g(z) produce small changes in f(g(z)). Chaining
these together, small changes in x should produce small changes in (f o

9)(x) = flg(x)).

The Proof Strategy

Given € > 0, we want to find 6 > 0 such that |z —¢| < ¢ implies |(fog)(z) —

(fog)o)] <e.

Since (f o g)(x) = f(g(x)), we need [f(g(z)) — f(g(c))| <e.
Step 1: Use the continuity of f at g(c) with tolerance € to get £; > 0

such that |y — g(c)| < &1 implies |f(y) — f(g(c))| < e.

Step 2: Use the continuity of g at ¢ with tolerance €; to get 6 > 0 such
that | — ¢| < d implies |g(x) — g(c)| < &1.

Step 3: Now if |[z—c¢| < §, then |g(x)—g(c)| < €1, which means | f(g(z))—
flg(e))] <e.

Your Challenge

Prove that the composition of continuous functions is continuous:
FunCont f — FunCont g — FunCont (f og)



The Formal Proof

Statement Cont_Comp (f g : R— R) (hf : FunCont f)
FunCont g)
FunCont (f o g) := by

intro x ¢ he

choose €1 elpos hel using hf (g x) € he

choose 0 dpos hd using hg x €1 elpos

use ¢, Opos

intro t ht

specialize hd t ht

apply hel (g t) ho

Understanding the Proof

(hg

This proof follows exactly the strategy outlined above. We use the continuity
of f at the point g(z) to get an intermediate tolerance 1, then use the
continuity of g at  with this tolerance to get our final 6. The composition

property ensures that the chain of approximations works correctly.



Level 2: Uniform Convergence

As we’ve discussed several times, pointwise convergence of functions is not
enough to preserve continuity. However, there is a stronger notion of conver-
gence, called uniform convergence, which does preserve continuity.

The Definition

Definition (UnifConv): Let f, be a sequence of functions, that is f: N —
R — R, and let F' be the hypothetical limit function. We say that f,
converges to I’ uniformly if:

Ve > 0,3N,¥n > N, Vz,|f.(z) — F(z)| <e

def UnifConv (f : N—R —-R) (F : R—R) : Prop :=
Ve >0, N, V>N, Vx, |[fnx-Fzx| <c¢

Pointwise vs. Uniform Convergence

The key difference between pointwise and uniform convergence is the order
of quantifiers:

Pointwise convergence: Vz,Ve > 0,3IN,Vn > N, |f.(z) — F(x)| < e

Uniform convergence: Ve > 0,3N,¥n > N, Vz, |f,(z) — F(z)| < e

In pointwise convergence, the choice of N can depend on both the point
x and the tolerance . In uniform convergence, we must find a single N that
works for all points z simultaneously, given only the tolerance ¢.

The Main Theorem

Theorem (Cont_of_UnifConv): If a sequence of functions f,, converges uni-
formly to F', and each f, is continuous, then F'is continuous.

This is the theorem that makes uniform convergence so important: it
preserves continuity, whereas pointwise convergence does not.

Proof Strategy: The ¢/3 Trick

To prove that F' is continuous at a point x, given ¢ > 0, we want to show
|F(y) — F(z)| < € for y near x.



We use the triangle inequality to write:

[F(y) = F(o)] < [F(y) = In@) + [In(y) = fn (@) + [fn(z) = F(2)]

Our goal is to make each of these three terms less than £/3:

Term 1: |F(y) — fn(y)| < €/3 - This comes from uniform convergence
Term 2: |fn(y) — fv(z)| < £/3 - This comes from continuity of fy Term
3: |fn(x) — F(z)| < ¢/3 - This also comes from uniform convergence

The crucial point is that uniform convergence gives us a single N that
makes both terms 1 and 3 small simultaneously for all points, including our
specific x and nearby y.

Your Challenge

Prove that the uniform limit of continuous functions is continuous:
(V n, FunCont (f n)) — UnifConv f F — FunCont F

The Formal Proof

Statement Cont_of_UnifConv (f : N— R —+R) (hf : V n,
FunCont (f n))
(F : R—R) (hfF : UnifConv f F) : FunCont F:= by
intro x € he
choose N hN using hfF (e / 3) (by bound)
choose 0 hd; hdz using hf N x (e / 3) (by bound)
use 0, hd
intro y hy
have hl1 : |[Fy - F x| < |f Ny -Fyl + |[fNy-£fN x|
+ |f N x - F x| := by
rewrite [show Fy - F x = (Fy - f Ny)+ ((f Ny -
f Nx)+ (£f Nx - F x)) by ring_nf]

have f1 : |(Fy - f Ny) + ((£f Ny - f N x) + (f N x
- Fx))l <
I(Fy-fNy)I + |[((f Ny -fN=x)+ (fNx-F

x))| := by apply abs_add

have f2 : [|[((f Ny - £ N x) + (£f N x - F x))| < |fN

y - fNx| + |[fNx-F x| :=
by apply abs_add
have f3 : |[Fy - £f Nyl = |f Ny - F yl := by apply
abs_sub_comm



linarith [f1, f2, £3]

have h2 : |f Ny - F yl < e / 3 := by apply hN N (by
bound) y

have h3 : |[f N x - F x| < ¢ / 3 := by apply hN N (by
bound) x

have h4 : |f Ny - £ N x| < e / 3 := by apply hds y hy

linarith [h1l, h2, h3, h4]

Understanding the Proof

The proof follows our /3 strategy exactly, but the triangle inequality step
(h1) deserves special attention:

Step 1: We use uniform convergence to choose N such that fy is within
e/3 of F at all points.

Step 2: We use the continuity of fy to choose 0 such that fy(y) is within
e/3 of fy(z) when y is within ¢ of x.

Step 3: The key insight is the algebraic rewrite:

Fly) = F(x) = [F(y) = fn@)] + v () — fn(@)] + [In(z) — F(2)]

Step 4: We apply the triangle inequality twice:

[F(y) — F(z)| = |[F(y) = fn@)] + () = fv(@) + fu(z) = F)]| (1)
<|[F(y) = v+ [n(y) = fn(2) + () = Fo)] - (2)
< [F(y) = In@)l +1n(y) = (@) + [fn(z) = Fz)] - (3)

Step 5: We also use the symmetry |F(y) — fn(v)| = |fn(y) — F(y)| to
match our uniform convergence bounds.
Step 6: Finally, each term is bounded by €/3, giving us |F(y)—F(z)| < e.



Level 3: Integration

Now we can move on to integration. Let’s warm up with definitions that you
already know from calculus, and a simple example.

New Definitions

Riemann Sum with right endpoints:

_ b—a (i +1)(b— a)
RiemannSum(f, a,b, N) = 7 ;f <a+ T)

noncomputable def RiemannSum (f : R—R) (a b : R) (N
N) : R :=
(b - a) / N x> i € range N, £ (a + (i + 1) * (b - a)
/ N)

HaslIntegral: A function f has integral I from a to b if the sequence of
Riemann sums converges to I:
def HasIntegral (f : R—R) (a b : R) (I : R) : Prop :=

SeqLim (fun N +— RiemannSum f a b N) I

IntegrableOn: A function f is integrable on [a,b] if there exists some
integral value:

def IntegrableOn (f : R—R) (a b : R) : Prop :=
4 I, SeqlLim (fun N+ RiemannSum f a b N) I

Helpful Theorems for Summation

To compute Riemann sums, we’ll need several theorems about finite sums:
o sum_add_distrib: ) .. (f(i) +9(i)) = D e, f(3) + D e, 9(0)

® sum_const: » ., Cc=cC-|s|

e card_range: [{0,1,...,n—1}|=n
o sum_div: ), (f(i)/c) = (D ;e (1)) /c
e sum_mul: Zzes(f(i) ) = (Zies f@@))-c

e sum_range_add_one: Z;:ol (1+1) = @
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Computing f; xdx

We want to show that the function f(x) = x is integrable on the interval
[a, b] where a < b, and compute its integral.
From calculus, we expect:

b 2 2
b* —a

d:
/axx 2

The Riemann Sum Calculation

The Riemann sum for f(x) = x with NV subintervals is:

b g VL
RiemannSum(z,a,b, N) = (a +
0

:b]—va — (a+(i+13\([b—a)> )
b—a b—angt
= Na + N 120(z+1) (6)
— - ajat O > )
_ (b—a)® N(N+1)
= (b—a)a+ —7 5 (8)
=(b—a)a+ (b- a)QJ(VN +1) ()
:(b—a)a+(b_2a) (b;]\?) (10)
As N — oo, this approaches:
(b—a)a+(b_2a) :a(b—a)—i-(b_a) b2l —2;b+a b ;a

Your Challenge

Prove that f(x) = x is integrable on [a, b] for a < b:
IntegrableOn (fun x +—x)a b
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Hint: Use (b> — a?)/2 as your proposed integral value. The key step is
showing that the Riemann sum approaches this limit.

The Formal Proof

Statement {a b : R} (hab : a < b)
IntegrableOn (fun x+>x) a b := by

use (b"2-a"2)/2

intro ¢ he

have bnd : 0 < 2 * ¢ / (b - a) ~ 2 := by bound

have bndinv : 0 <1 / (2 x ¢ / (b - a) ~ 2) := by bound

choose N hN using ArchProp bnd

use N

intro n hn

have hn’ : (N : R) < n := by exact_mod_cast hn

have Npos : (0 : R) < N := by linarith [bndinv, hN]

have npos : (0 : R) < n := by linarith [Npos, hn’]

have f1 : (fun N => RiemannSum (fun x => x) a b N) n - (
b~ 2-a~2) /2 = (b-a)’2/ (2 * n) := by

change ((b - a) / n * O i € range n, (a + (i + 1) * (
b-a /mn)))-(b~2-a"~2) /2 =_
rewrite [show >, i € range n, (a + (i + 1) *x (b - a) /
n) =
O i € range n, a) +
> i € range n, ((i + 1) * (b - a) / n) by apply
sum_add_distrib]

rewrite [show > i € range n, a = #(range n) - a by
apply sum_const]
rewrite [show #(range n) = n by apply card_rangel

rewrite [show > i € range n, ((i + 1) * (b - a) / n) =
O i € range n, (i + 1) * (b - a)) / n by rewrite
k- sum_div]; rfll]
rewrite [show (O i € range n, (i + 1) * (b - a)) / n =
G i € range n, (i + 1 : R)) * (b - a) / n by
rewrite [— sum_mul]; rfl]
rewrite [show ), i € range n, ((i : R) + 1)
1) / 2 by apply sum_range_add_one]
field_simp
ring_nf
rewrite [f1]

n *x (n +

12



have f2 : 0 < (b - a) =~ 2 / (2 * n) := by bound
rewrite [abs_of_nonneg f£2]

field_simp

field_simp at hN

have f3 : 2 *x ¢ x*x N < 2 % ¢
rewrite [show 2 * € * n = 2
linarith [hN, £3]

:= by bound
* ¢ by ring_nf] at £3

Understanding the Proof

The proof strategy is to show that the difference between the n-th Riemann
sum and (b? — a?)/2 is exactly (b— a)?/(2n), which approaches 0 as n — oo.
Key steps in the computation (f1):
Step 1: We expand the definition of the Riemann sum and separate the
sum using sum_add_distrib.
Step 2: We evaluate Z?:_Ol a =n - a using sum_const and card_range.
Step 3: We factor out constants from the second sum using sum_div and
sum_mul.
Step 4: We apply the crucial identity Z?;Ol(z'ﬂ) = % from sum_range_add_one

Step 5: Through field simplification and ring normalization, we show

that: 2 - )
—a —a
Ri S b,n)— =
iemannSum(z, a, b, n) 5 5

. —_ 2 . . .
Convergence argument: Since we need )%‘ < g, this is equivalent

ton > % The Archimedean property guarantees we can find such an N,
and the proof shows that for all n > N, the error bound holds.
This completes the proof that fab zdy = 2= using the formal definition

2
of Riemann integration.
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