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SOCRATES: I just noticed something about that last level.

SIMPLICIO: Ugh. Ok, what was it?

SOCRATES: I don’t know, you tell me.

SIMPLICIO: We proved that x2− 1 was continuous everywhere. So what?

SOCRATES: Right. How did we do it? What δ did we choose, once ε was
given?

SIMPLICIO: Are you getting senile, old man? We chose δ = ε/(2|x|+ 1).

SOCRATES: Anything interesting about that?

SIMPLICIO: What, that it has an x in it? So what? We had no other
choice but to choose δ depending on x. We took y near x, |y − x| < δ, and
computed that |f(y) − f(x)| was |y − x| · |y + x|. The first factor is good,
since it’s less than δ; in the second factor, since y is near x, then |y + x| has
size about 2 · |x|, and we added one just to be safe.

SOCRATES: Ok, let’s put a pin in this and come back to it later. Here’s a
question: suppose I have a sequence of continuous functions fn, and suppose
fn converges to some limit function F . That is, for every x, the sequence of
real numbers n 7→ fn(x) converges to F (x). What can you tell me about F?

SIMPLICIO: Is F continuous? Wait, I’ve fallen into this trap before. I
even remember my counterexample from Lecture 1: Just take fn(x) = xn on
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[0, 1]. Each fn is continuous, but the limiting function is discontinuous at
x = 1.

SOCRATES: Exactly! So mere pointwise convergence isn’t enough. But
let’s pretend that it was and see what goes wrong with our proof of continuity.

SIMPLICIO: Ok, so you want me to try (and fail) to prove that F is
continuous at some point x. Given ε > 0, we need to find δ > 0 such that
for all y with |y − x| < δ, we have |F (y)− F (x)| < ε.

SOCRATES: Right. Go on.

SIMPLICIO: Since fn converges to F pointwise, for our given x and ε, we
can find some big enough N such that for all n ≥ N , we have |fn(x)−F (x)| <
ε/3.

SOCRATES: Yes. And?

SIMPLICIO: Now, since fN is continuous at x, we can find some δ > 0
such that for all y with |y − x| < δ, we have |fN(y)− fN(x)| < ε/3.

SOCRATES: Good so far. Now, what would you like to do next?

SIMPLICIO: Well, I want to show that |F (y)− F (x)| < ε for y close to x.
I can use the triangle inequality: |F (y)− F (x)| ≤ |F (y)− fN(y)|+ |fN(y)−
fN(x)|+ |fN(x)− F (x)|.
SOCRATES: Excellent! And what can you say about each of these three
terms?

SIMPLICIO: Well, the middle term is less than ε/3 by our choice of δ. The
last term is less than ε/3 by our choice of N . So if I can make the first term
less than ε/3, I’m done!

SOCRATES: And can you?

SIMPLICIO: Hmm... I need |F (y) − fN(y)| < ε/3. Since fn converges to
F at the point y, I can find some M (which might depend on y) such that
for n ≥ M , we have |fn(y)− F (y)| < ε/3. Uh oh...

SOCRATES: What’s the problem?

SIMPLICIO: The problem is that my N was chosen to work at the specific
point x, but now I need it to work at this other point y too! And y could
be any point near x, so I’d need N to work at all of these points near x
simultaneously.

SOCRATES: Yeah, so what? No matter which y you pick, you can always
find some M that works for that y.
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SIMPLICIO: But that’s exactly the problem! The M I find depends on
which y I’m looking at. For one y, I might need M = 100. For another
y nearby, I might need M = 1000. And for yet another y, I might need
M = 10000.

SOCRATES: So?

SIMPLICIO: So my original N was fixed at the beginning - it only depends
on x and ε. But now I need this same fixed N to work for all possible values
of y near x. There’s no guarantee that my fixed N is bigger than all the
different M ’s I’d need for different y’s!

SOCRATES: Ah, I see. So you’re saying that even though fn(y) → F (y) for
each individual y, there might not be a single N that makes the convergence
happen “fast enough” simultaneously for all y in a neighborhood?

SIMPLICIO: Exactly! The convergence might be happening at wildly dif-
ferent rates at different points. At some points it might converge quickly, at
others very slowly.

SOCRATES: Interesting. So what kind of convergence would you need to
make this proof work?

SIMPLICIO: I’d need the convergence to be... uniform over the whole
space? Or at least uniform over neighborhoods? So that I can find a single
N that works for all points at once, not just point by point.

SOCRATES: Precisely! You’ve just discovered why we need the concept of
uniform convergence. Shall we make this precise?

SIMPLICIO: Yes! What exactly do we mean by “uniform convergence”?

SOCRATES: You tell me.

SIMPLICIO: Well, I said that I need a single N that works for all points at
once. So instead of saying “for each y, there exists M such that for n ≥ M ,
we have |fn(y) − F (y)| < ε/3”, I need to say “there exists N such that for
all y and all n ≥ N , we have |fn(y)− F (y)| < ε/3”.

SOCRATES: Exactly! So uniform convergence means: for every ε > 0,
there exists N such that for all n ≥ N and for all x in our domain, we have
|fn(x)− F (x)| < ε.

SIMPLICIO: Got it! The key difference is the order of quantifiers. In
pointwise convergence, we have “for all x, there exists N” - the N can depend
on x. In uniform convergence, we have “there exists N such that for all x” -
the same N must work for every point.
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SOCRATES: Perfect! This is exactly what Cauchy got wrong in his first
attempt at proving that limits of continuous functions were continuous; he
was missing uniformity! Ready to work on the proof?

SIMPLICIO: Yes, let’s do it!
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Level 1: Continuous Composition

Some things with continuous functions are easy. (Some things are not; see
the next level!)

The Result

Theorem (Cont_Comp): The composition of continuous functions is contin-
uous.

If f : R → R and g : R → R are both continuous functions, then their
composition f ◦ g is also continuous.

The Intuition

This result makes intuitive sense: if g is continuous at a point x, then small
changes in x produce small changes in g(x). Similarly, if f is continuous at
g(x), then small changes in g(x) produce small changes in f(g(x)). Chaining
these together, small changes in x should produce small changes in (f ◦
g)(x) = f(g(x)).

The Proof Strategy

Given ε > 0, we want to find δ > 0 such that |x− c| < δ implies |(f ◦ g)(x)−
(f ◦ g)(c)| < ε.

Since (f ◦ g)(x) = f(g(x)), we need |f(g(x))− f(g(c))| < ε.
Step 1: Use the continuity of f at g(c) with tolerance ε to get ε1 > 0

such that |y − g(c)| < ε1 implies |f(y)− f(g(c))| < ε.
Step 2: Use the continuity of g at c with tolerance ε1 to get δ > 0 such

that |x− c| < δ implies |g(x)− g(c)| < ε1.
Step 3: Now if |x−c| < δ, then |g(x)−g(c)| < ε1, which means |f(g(x))−

f(g(c))| < ε.

Your Challenge

Prove that the composition of continuous functions is continuous:
FunCont f → FunCont g → FunCont (f ◦g)

5



The Formal Proof

Statement Cont_Comp (f g : R→ R) (hf : FunCont f) (hg :

FunCont g) :

FunCont (f ◦ g) := by

intro x ε hε
choose ε1 ε1pos hε1 using hf (g x) ε hε
choose δ δ pos hδ using hg x ε1 ε1pos
use δ , δ pos
intro t ht

specialize hδ t ht

apply hε1 (g t) hδ

Understanding the Proof

This proof follows exactly the strategy outlined above. We use the continuity
of f at the point g(x) to get an intermediate tolerance ε1, then use the
continuity of g at x with this tolerance to get our final δ. The composition
property ensures that the chain of approximations works correctly.
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Level 2: Uniform Convergence

As we’ve discussed several times, pointwise convergence of functions is not
enough to preserve continuity. However, there is a stronger notion of conver-
gence, called uniform convergence, which does preserve continuity.

The Definition

Definition (UnifConv): Let fn be a sequence of functions, that is f : N →
R → R, and let F be the hypothetical limit function. We say that fn
converges to F uniformly if:

∀ε > 0, ∃N, ∀n ≥ N, ∀x, |fn(x)− F (x)| < ε

def UnifConv (f : N→ R→ R) (F : R→ R) : Prop :=

∀ ε > 0, ∃ N, ∀ n ≥ N, ∀ x, |f n x - F x| < ε

Pointwise vs. Uniform Convergence

The key difference between pointwise and uniform convergence is the order
of quantifiers:

Pointwise convergence: ∀x, ∀ε > 0,∃N,∀n ≥ N, |fn(x)− F (x)| < ε
Uniform convergence: ∀ε > 0,∃N,∀n ≥ N,∀x, |fn(x)− F (x)| < ε
In pointwise convergence, the choice of N can depend on both the point

x and the tolerance ε. In uniform convergence, we must find a single N that
works for all points x simultaneously, given only the tolerance ε.

The Main Theorem

Theorem (Cont_of_UnifConv): If a sequence of functions fn converges uni-
formly to F , and each fn is continuous, then F is continuous.

This is the theorem that makes uniform convergence so important: it
preserves continuity, whereas pointwise convergence does not.

Proof Strategy: The ε/3 Trick

To prove that F is continuous at a point x, given ε > 0, we want to show
|F (y)− F (x)| < ε for y near x.
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We use the triangle inequality to write:

|F (y)− F (x)| ≤ |F (y)− fN(y)|+ |fN(y)− fN(x)|+ |fN(x)− F (x)|

Our goal is to make each of these three terms less than ε/3:
Term 1: |F (y) − fN(y)| < ε/3 - This comes from uniform convergence

Term 2: |fN(y) − fN(x)| < ε/3 - This comes from continuity of fN Term
3: |fN(x)− F (x)| < ε/3 - This also comes from uniform convergence

The crucial point is that uniform convergence gives us a single N that
makes both terms 1 and 3 small simultaneously for all points, including our
specific x and nearby y.

Your Challenge

Prove that the uniform limit of continuous functions is continuous:
(∀ n, FunCont (f n)) → UnifConv f F → FunCont F

The Formal Proof

Statement Cont_of_UnifConv (f : N→ R→ R) (hf : ∀ n,

FunCont (f n))

(F : R→ R) (hfF : UnifConv f F) : FunCont F:= by

intro x ε hε
choose N hN using hfF (ε / 3) (by bound)

choose δ hδ 1 hδ 2 using hf N x (ε / 3) (by bound)

use δ , hδ 1

intro y hy

have h1 : |F y - F x| ≤ |f N y - F y| + |f N y - f N x|

+ |f N x - F x| := by

rewrite [show F y - F x = (F y - f N y) + ((f N y -

f N x) + (f N x - F x)) by ring_nf]

have f1 : |(F y - f N y) + ((f N y - f N x) + (f N x

- F x))| ≤
|(F y - f N y)| + |((f N y - f N x) + (f N x - F

x))| := by apply abs_add

have f2 : |((f N y - f N x) + (f N x - F x))| ≤ |f N

y - f N x| + |f N x - F x| :=

by apply abs_add

have f3 : |F y - f N y| = |f N y - F y| := by apply

abs_sub_comm
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linarith [f1, f2, f3]

have h2 : |f N y - F y| < ε / 3 := by apply hN N (by

bound) y

have h3 : |f N x - F x| < ε / 3 := by apply hN N (by

bound) x

have h4 : |f N y - f N x| < ε / 3 := by apply hδ 2 y hy

linarith [h1, h2, h3, h4]

Understanding the Proof

The proof follows our ε/3 strategy exactly, but the triangle inequality step
(h1) deserves special attention:

Step 1: We use uniform convergence to choose N such that fN is within
ε/3 of F at all points.

Step 2: We use the continuity of fN to choose δ such that fN(y) is within
ε/3 of fN(x) when y is within δ of x.

Step 3: The key insight is the algebraic rewrite:

F (y)− F (x) = [F (y)− fN(y)] + [fN(y)− fN(x)] + [fN(x)− F (x)]

Step 4: We apply the triangle inequality twice:

|F (y)− F (x)| = |[F (y)− fN(y)] + [fN(y)− fN(x) + fN(x)− F (x)]| (1)

≤ |F (y)− fN(y)|+ |fN(y)− fN(x) + fN(x)− F (x)| (2)

≤ |F (y)− fN(y)|+ |fN(y)− fN(x)|+ |fN(x)− F (x)| (3)

Step 5: We also use the symmetry |F (y) − fN(y)| = |fN(y) − F (y)| to
match our uniform convergence bounds.

Step 6: Finally, each term is bounded by ε/3, giving us |F (y)−F (x)| < ε.
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Level 3: Integration

Now we can move on to integration. Let’s warm up with definitions that you
already know from calculus, and a simple example.

New Definitions

Riemann Sum with right endpoints:

RiemannSum(f, a, b,N) =
b− a

N

N−1∑
i=0

f

(
a+

(i+ 1)(b− a)

N

)
noncomputable def RiemannSum (f : R→ R) (a b : R) (N :

N) : R :=

(b - a) / N *
∑

i ∈ range N, f (a + (i + 1) * (b - a)

/ N)

HasIntegral: A function f has integral I from a to b if the sequence of
Riemann sums converges to I:

def HasIntegral (f : R→ R) (a b : R) (I : R) : Prop :=

SeqLim (fun N 7→ RiemannSum f a b N) I

IntegrableOn: A function f is integrable on [a, b] if there exists some
integral value:

def IntegrableOn (f : R→ R) (a b : R) : Prop :=

∃ I, SeqLim (fun N 7→ RiemannSum f a b N) I

Helpful Theorems for Summation

To compute Riemann sums, we’ll need several theorems about finite sums:

• sum_add_distrib:
∑

i∈s(f(i) + g(i)) =
∑

i∈s f(i) +
∑

i∈s g(i)

• sum_const:
∑

i∈s c = c · |s|

• card_range: |{0, 1, . . . , n− 1}| = n

• sum_div:
∑

i∈s(f(i)/c) = (
∑

i∈s f(i))/c

• sum_mul:
∑

i∈s(f(i) · c) = (
∑

i∈s f(i)) · c

• sum_range_add_one:
∑n−1

i=0 (i+ 1) = n(n+1)
2
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Computing
∫ b

a x dx

We want to show that the function f(x) = x is integrable on the interval
[a, b] where a < b, and compute its integral.

From calculus, we expect:∫ b

a

x dx =
b2 − a2

2

The Riemann Sum Calculation

The Riemann sum for f(x) = x with N subintervals is:

RiemannSum(x, a, b,N) =
b− a

N

N−1∑
i=0

(
a+

(i+ 1)(b− a)

N

)
(4)

=
b− a

N

N−1∑
i=0

(
a+

(i+ 1)(b− a)

N

)
(5)

=
b− a

N

[
Na+

b− a

N

N−1∑
i=0

(i+ 1)

]
(6)

= (b− a)a+
(b− a)2

N2

N∑
i=1

i (7)

= (b− a)a+
(b− a)2

N2
· N(N + 1)

2
(8)

= (b− a)a+
(b− a)2(N + 1)

2N
(9)

= (b− a)a+
(b− a)2

2
+

(b− a)2

2N
(10)

As N → ∞, this approaches:

(b−a)a+
(b− a)2

2
= a(b−a)+

(b− a)2

2
= ab−a2+

b2 − 2ab+ a2

2
=

b2 − a2

2

Your Challenge

Prove that f(x) = x is integrable on [a, b] for a < b:
IntegrableOn (fun x 7→x)a b
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Hint: Use (b2 − a2)/2 as your proposed integral value. The key step is
showing that the Riemann sum approaches this limit.

The Formal Proof

Statement {a b : R} (hab : a < b) :

IntegrableOn (fun x 7→ x) a b := by

use (b^2-a^2)/2

intro ε hε
have bnd : 0 < 2 * ε / (b - a) ^ 2 := by bound

have bndinv : 0 < 1 / (2 * ε / (b - a) ^ 2) := by bound

choose N hN using ArchProp bnd

use N

intro n hn

have hn’ : (N : R) ≤ n := by exact_mod_cast hn

have Npos : (0 : R) < N := by linarith [bndinv , hN]

have npos : (0 : R) < n := by linarith [Npos , hn ’]

have f1 : (fun N => RiemannSum (fun x => x) a b N) n - (

b ^ 2 - a ^ 2) / 2 = (b-a)^2 / (2 * n) := by

change ((b - a) / n * (
∑

i ∈ range n, (a + (i + 1) * (

b - a) / n))) - (b ^ 2 - a ^ 2) / 2 = _

rewrite [show
∑

i ∈ range n, (a + (i + 1) * (b - a) /

n) =

(
∑

i ∈ range n, a) +∑
i ∈ range n, ((i + 1) * (b - a) / n) by apply

sum_add_distrib]

rewrite [show
∑

i ∈ range n, a = #(range n) · a by

apply sum_const]

rewrite [show #( range n) = n by apply card_range]

rewrite [show
∑

i ∈ range n, ((i + 1) * (b - a) / n) =

(
∑

i ∈ range n, (i + 1) * (b - a)) / n by rewrite

[← sum_div ]; rfl]

rewrite [show (
∑

i ∈ range n, (i + 1) * (b - a)) / n =

(
∑

i ∈ range n, (i + 1 : R)) * (b - a) / n by

rewrite [← sum_mul ]; rfl]

rewrite [show
∑

i ∈ range n, ((i : R) + 1) = n * (n +

1) / 2 by apply sum_range_add_one]

field_simp

ring_nf

rewrite [f1]
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have f2 : 0 ≤ (b - a) ^ 2 / (2 * n) := by bound

rewrite [abs_of_nonneg f2]

field_simp

field_simp at hN

have f3 : 2 * ε * N ≤ 2 * ε * n := by bound

rewrite [show 2 * ε * n = 2 * n * ε by ring_nf] at f3

linarith [hN, f3]

Understanding the Proof

The proof strategy is to show that the difference between the n-th Riemann
sum and (b2 − a2)/2 is exactly (b− a)2/(2n), which approaches 0 as n → ∞.

Key steps in the computation (f1):
Step 1: We expand the definition of the Riemann sum and separate the

sum using sum_add_distrib.
Step 2: We evaluate

∑n−1
i=0 a = n · a using sum_const and card_range.

Step 3: We factor out constants from the second sum using sum_div and
sum_mul.

Step 4: We apply the crucial identity
∑n−1

i=0 (i+1) = n(n+1)
2

from sum_range_add_one

.
Step 5: Through field simplification and ring normalization, we show

that:

RiemannSum(x, a, b, n)− b2 − a2

2
=

(b− a)2

2n

Convergence argument: Since we need
∣∣∣ (b−a)2

2n

∣∣∣ < ε, this is equivalent

to n > (b−a)2

2ε
. The Archimedean property guarantees we can find such an N ,

and the proof shows that for all n ≥ N , the error bound holds.
This completes the proof that

∫ b

a
x dx = b2−a2

2
using the formal definition

of Riemann integration.
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