An Introduction to Formal Real Analysis, Rutgers University, Fall 2025, Math 311H

Lecture 22: Uniformity

Prof. Alex Kontorovich

This text is automatically generated by LLM from "Real Analysis, The Game", Lecture 22

SOCRATES: I just noticed something about that last level.

SIMPLICIO: Ugh. Ok, what was it?

SOCRATES: I don't know, you tell me.

SIMPLICIO: We proved that $x^2 - 1$ was continuous everywhere. So what?

SOCRATES: Right. How did we do it? What δ did we choose, once ε was

given?

SIMPLICIO: Are you getting senile, old man? We chose $\delta = \varepsilon/(2|x|+1)$.

SOCRATES: Anything interesting about that?

SIMPLICIO: What, that it has an x in it? So what? We had no other choice but to choose δ depending on x. We took y near x, $|y-x| < \delta$, and computed that |f(y) - f(x)| was $|y-x| \cdot |y+x|$. The first factor is good, since it's less than δ ; in the second factor, since y is near x, then |y+x| has size about $2 \cdot |x|$, and we added one just to be safe.

SOCRATES: Ok, let's put a pin in this and come back to it later. Here's a question: suppose I have a sequence of continuous functions f_n , and suppose f_n converges to some limit function F. That is, for every x, the sequence of real numbers $n \mapsto f_n(x)$ converges to F(x). What can you tell me about F?

SIMPLICIO: Is F continuous? Wait, I've fallen into this trap before. I even remember my counterexample from Lecture 1: Just take $f_n(x) = x^n$ on

[0, 1]. Each f_n is continuous, but the limiting function is discontinuous at x = 1.

SOCRATES: Exactly! So mere pointwise convergence isn't enough. But let's pretend that it was and see what goes wrong with our proof of continuity.

SIMPLICIO: Ok, so you want me to try (and fail) to prove that F is continuous at some point x. Given $\varepsilon > 0$, we need to find $\delta > 0$ such that for all y with $|y - x| < \delta$, we have $|F(y) - F(x)| < \varepsilon$.

SOCRATES: Right. Go on.

SIMPLICIO: Since f_n converges to F pointwise, for our given x and ε , we can find some big enough N such that for all $n \geq N$, we have $|f_n(x) - F(x)| < \varepsilon/3$.

SOCRATES: Yes. And?

SIMPLICIO: Now, since f_N is continuous at x, we can find some $\delta > 0$ such that for all y with $|y - x| < \delta$, we have $|f_N(y) - f_N(x)| < \varepsilon/3$.

SOCRATES: Good so far. Now, what would you like to do next?

SIMPLICIO: Well, I want to show that $|F(y) - F(x)| < \varepsilon$ for y close to x. I can use the triangle inequality: $|F(y) - F(x)| \le |F(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - F(x)|$.

SOCRATES: Excellent! And what can you say about each of these three terms?

SIMPLICIO: Well, the middle term is less than $\varepsilon/3$ by our choice of δ . The last term is less than $\varepsilon/3$ by our choice of N. So if I can make the first term less than $\varepsilon/3$, I'm done!

SOCRATES: And can you?

SIMPLICIO: Hmm... I need $|F(y) - f_N(y)| < \varepsilon/3$. Since f_n converges to F at the point y, I can find some M (which might depend on y) such that for $n \ge M$, we have $|f_n(y) - F(y)| < \varepsilon/3$. Uh oh...

SOCRATES: What's the problem?

SIMPLICIO: The problem is that my N was chosen to work at the specific point x, but now I need it to work at this other point y too! And y could be **any** point near x, so I'd need N to work at all of these points near x simultaneously.

SOCRATES: Yeah, so what? No matter which y you pick, you can always find some M that works for that y.

SIMPLICIO: But that's exactly the problem! The M I find depends on which y I'm looking at. For one y, I might need M = 100. For another y nearby, I might need M = 1000. And for yet another y, I might need M = 10000.

SOCRATES: So?

SIMPLICIO: So my original N was fixed at the beginning - it only depends on x and ε . But now I need this same fixed N to work for all possible values of y near x. There's no guarantee that my fixed N is bigger than all the different M's I'd need for different y's!

SOCRATES: Ah, I see. So you're saying that even though $f_n(y) \to F(y)$ for each individual y, there might not be a single N that makes the convergence happen "fast enough" simultaneously for all y in a neighborhood?

SIMPLICIO: Exactly! The convergence might be happening at wildly different rates at different points. At some points it might converge quickly, at others very slowly.

SOCRATES: Interesting. So what kind of convergence would you need to make this proof work?

SIMPLICIO: I'd need the convergence to be... uniform over the whole space? Or at least uniform over neighborhoods? So that I can find a single N that works for all points at once, not just point by point.

SOCRATES: Precisely! You've just discovered why we need the concept of **uniform convergence**. Shall we make this precise?

SIMPLICIO: Yes! What exactly do we mean by "uniform convergence"?

SOCRATES: You tell me.

SIMPLICIO: Well, I said that I need a single N that works for all points at once. So instead of saying "for each y, there exists M such that for $n \ge M$, we have $|f_n(y) - F(y)| < \varepsilon/3$ ", I need to say "there exists N such that for all y and all $n \ge N$, we have $|f_n(y) - F(y)| < \varepsilon/3$ ".

SOCRATES: Exactly! So uniform convergence means: for every $\varepsilon > 0$, there exists N such that for all $n \geq N$ and for all x in our domain, we have $|f_n(x) - F(x)| < \varepsilon$.

SIMPLICIO: Got it! The key difference is the *order of quantifiers*. In pointwise convergence, we have "for all x, there exists N" - the N can depend on x. In uniform convergence, we have "there exists N such that for all x" - the same N must work for every point.

SOCRATES: Perfect! This is *exactly* what Cauchy got **wrong** in his first attempt at proving that limits of continuous functions were continuous; he was missing uniformity! Ready to work on the proof?

SIMPLICIO: Yes, let's do it!

Level 1: Continuous Composition

Some things with continuous functions are easy. (Some things are not; see the next level!)

The Result

Theorem (Cont_Comp): The composition of continuous functions is continuous.

If $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are both continuous functions, then their composition $f \circ g$ is also continuous.

The Intuition

This result makes intuitive sense: if g is continuous at a point x, then small changes in x produce small changes in g(x). Similarly, if f is continuous at g(x), then small changes in g(x) produce small changes in f(g(x)). Chaining these together, small changes in x should produce small changes in f(g(x)).

The Proof Strategy

Given $\varepsilon > 0$, we want to find $\delta > 0$ such that $|x - c| < \delta$ implies $|(f \circ g)(x) - (f \circ g)(c)| < \varepsilon$.

Since $(f \circ g)(x) = f(g(x))$, we need $|f(g(x)) - f(g(c))| < \varepsilon$.

Step 1: Use the continuity of f at g(c) with tolerance ε to get $\varepsilon_1 > 0$ such that $|y - g(c)| < \varepsilon_1$ implies $|f(y) - f(g(c))| < \varepsilon$.

Step 2: Use the continuity of g at c with tolerance ε_1 to get $\delta > 0$ such that $|x - c| < \delta$ implies $|g(x) - g(c)| < \varepsilon_1$.

Step 3: Now if $|x-c| < \delta$, then $|g(x)-g(c)| < \varepsilon_1$, which means $|f(g(x))-f(g(c))| < \varepsilon$.

Your Challenge

Prove that the composition of continuous functions is continuous:

FunCont f \rightarrow FunCont g \rightarrow FunCont (f \circ g)

The Formal Proof

```
Statement Cont_Comp (f g : \mathbb{R} \to \mathbb{R}) (hf : FunCont f) (hg : FunCont g) : FunCont (f \circ g) := by intro x \varepsilon h\varepsilon choose \varepsilon1 \varepsilon1pos h\varepsilon1 using hf (g x) \varepsilon h\varepsilon choose \delta \deltapos h\delta using hg x \varepsilon1 \varepsilon1pos use \delta, \deltapos intro t ht specialize h\delta t ht apply h\varepsilon1 (g t) h\delta
```

Understanding the Proof

This proof follows exactly the strategy outlined above. We use the continuity of f at the point g(x) to get an intermediate tolerance ε_1 , then use the continuity of g at x with this tolerance to get our final δ . The composition property ensures that the chain of approximations works correctly.

Level 2: Uniform Convergence

As we've discussed several times, pointwise convergence of functions is not enough to preserve continuity. However, there is a stronger notion of convergence, called uniform convergence, which does preserve continuity.

The Definition

Definition (UnifConv): Let f_n be a sequence of functions, that is $f: \mathbb{N} \to \mathbb{R}$, and let F be the hypothetical limit function. We say that f_n converges to F uniformly if:

$$\forall \varepsilon > 0, \exists N, \forall n \geq N, \forall x, |f_n(x) - F(x)| < \varepsilon$$

```
def UnifConv (f : \mathbb{N} \to \mathbb{R} \to \mathbb{R}) (F : \mathbb{R} \to \mathbb{R}) : Prop := \forall \varepsilon > 0, \exists \mathbb{N}, \forall \mathbb{N} \to \mathbb{N}, \forall \mathbb{N} \to \mathbb{R}, \forall \mathbb{N} \to \mathbb{R} | \forall \mathbb{N} \to \mathbb{
```

Pointwise vs. Uniform Convergence

The key difference between pointwise and uniform convergence is the order of quantifiers:

```
Pointwise convergence: \forall x, \forall \varepsilon > 0, \exists N, \forall n \geq N, |f_n(x) - F(x)| < \varepsilon
Uniform convergence: \forall \varepsilon > 0, \exists N, \forall n \geq N, \forall x, |f_n(x) - F(x)| < \varepsilon
```

In pointwise convergence, the choice of N can depend on both the point x and the tolerance ε . In uniform convergence, we must find a single N that works for all points x simultaneously, given only the tolerance ε .

The Main Theorem

Theorem (Cont_of_UnifConv): If a sequence of functions f_n converges uniformly to F, and each f_n is continuous, then F is continuous.

This is the theorem that makes uniform convergence so important: it preserves continuity, whereas pointwise convergence does not.

Proof Strategy: The $\varepsilon/3$ Trick

To prove that F is continuous at a point x, given $\varepsilon > 0$, we want to show $|F(y) - F(x)| < \varepsilon$ for y near x.

We use the triangle inequality to write:

$$|F(y) - F(x)| \le |F(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - F(x)|$$

Our goal is to make each of these three terms less than $\varepsilon/3$:

Term 1: $|F(y) - f_N(y)| < \varepsilon/3$ - This comes from uniform convergence **Term 2**: $|f_N(y) - f_N(x)| < \varepsilon/3$ - This comes from continuity of f_N **Term 3**: $|f_N(x) - F(x)| < \varepsilon/3$ - This also comes from uniform convergence

The crucial point is that uniform convergence gives us a single N that makes both terms 1 and 3 small *simultaneously* for all points, including our specific x and nearby y.

Your Challenge

Prove that the uniform limit of continuous functions is continuous:

```
(\forall \ n, \ {\tt FunCont} \ ({\tt f} \ n)) 	o {\tt UnifConv} \ {\tt f} \ {\tt F} 	o {\tt FunCont} \ {\tt F}
```

The Formal Proof

```
Statement Cont_of_UnifConv (f : \mathbb{N} \to \mathbb{R} \to \mathbb{R}) (hf : \forall n,
   FunCont (f n))
     (F : \mathbb{R} \to \mathbb{R}) (hfF : UnifConv f F) : FunCont F := by
intro x \varepsilon h\varepsilon
choose N hN using hfF (\varepsilon / 3) (by bound)
choose \delta h\delta_1 h\delta_2 using hf N x (\varepsilon / 3) (by bound)
use \delta, h\delta_1
intro y hy
have h1 : |F y - F x| \le |f N y - F y| + |f N y - f N x|
   + |f N x - F x| := by
     rewrite [show F y - F x = (F y - f N y) + ((f N y - f N y))
        f N x) + (f N x - F x)) by ring_nf]
    have f1 : |(F y - f N y) + ((f N y - f N x) + (f N x))|
         - F x)) | <
          |(F y - f N y)| + |((f N y - f N x) + (f N x - F x)|
              x))| := by apply abs_add
    have f2 : |((f N y - f N x) + (f N x - F x))| \le |f N
         y - f N x | + | f N x - F x | :=
         by apply abs_add
     have f3 : |F y - f N y| = |f N y - F y| := by apply
        abs_sub_comm
```

```
linarith [f1, f2, f3] have h2: |f N y - F y| < \varepsilon / 3:= by apply hN N (by bound) y have h3: |f N x - F x| < \varepsilon / 3:= by apply hN N (by bound) x have h4: |f N y - f N x| < \varepsilon / 3:= by apply h\delta_2 y hy linarith [h1, h2, h3, h4]
```

Understanding the Proof

The proof follows our $\varepsilon/3$ strategy exactly, but the triangle inequality step (h1) deserves special attention:

Step 1: We use uniform convergence to choose N such that f_N is within $\varepsilon/3$ of F at all points.

Step 2: We use the continuity of f_N to choose δ such that $f_N(y)$ is within $\varepsilon/3$ of $f_N(x)$ when y is within δ of x.

Step 3: The key insight is the algebraic rewrite:

$$F(y) - F(x) = [F(y) - f_N(y)] + [f_N(y) - f_N(x)] + [f_N(x) - F(x)]$$

Step 4: We apply the triangle inequality twice:

$$|F(y) - F(x)| = |[F(y) - f_N(y)] + [f_N(y) - f_N(x) + f_N(x) - F(x)]|$$
(1)

$$\leq |F(y) - f_N(y)| + |f_N(y) - f_N(x) + f_N(x) - F(x)|$$
(2)

$$\leq |F(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - F(x)|$$
(3)

Step 5: We also use the symmetry $|F(y) - f_N(y)| = |f_N(y) - F(y)|$ to match our uniform convergence bounds.

Step 6: Finally, each term is bounded by $\varepsilon/3$, giving us $|F(y)-F(x)|<\varepsilon$.

Level 3: Integration

Now we can move on to integration. Let's warm up with definitions that you already know from calculus, and a simple example.

New Definitions

Riemann Sum with *right* endpoints:

RiemannSum
$$(f, a, b, N) = \frac{b-a}{N} \sum_{i=0}^{N-1} f\left(a + \frac{(i+1)(b-a)}{N}\right)$$

```
noncomputable def RiemannSum (f : \mathbb{R} \to \mathbb{R}) (a b : \mathbb{R}) (N : \mathbb{N}) : \mathbb{R} := (b - a) / N * \sum i \in range N, f (a + (i + 1) * (b - a) / N)
```

HasIntegral: A function f has integral I from a to b if the sequence of Riemann sums converges to I:

```
def HasIntegral (f : \mathbb{R} \to \mathbb{R}) (a b : \mathbb{R}) (I : \mathbb{R}) : Prop := SeqLim (fun N \mapsto RiemannSum f a b N) I
```

IntegrableOn: A function f is integrable on [a, b] if there exists some integral value:

```
def IntegrableOn (f : \mathbb{R} \to \mathbb{R}) (a b : \mathbb{R}) : Prop := 
∃ I, SeqLim (fun N \mapsto RiemannSum f a b N) I
```

Helpful Theorems for Summation

To compute Riemann sums, we'll need several theorems about finite sums:

- \bullet sum_add_distrib: $\sum_{i \in s} (f(i) + g(i)) = \sum_{i \in s} f(i) + \sum_{i \in s} g(i)$
- sum_const: $\sum_{i \in s} c = c \cdot |s|$
- card_range: $|\{0, 1, \dots, n-1\}| = n$
- \bullet sum_div: $\sum_{i \in s} (f(i)/c) = (\sum_{i \in s} f(i))/c$
- \bullet sum_mul: $\sum_{i \in s} (f(i) \cdot c) = (\sum_{i \in s} f(i)) \cdot c$
- \bullet sum_range_add_one: $\sum_{i=0}^{n-1} (i+1) = \frac{n(n+1)}{2}$

Computing $\int_a^b x \, dx$

We want to show that the function f(x) = x is integrable on the interval [a, b] where a < b, and compute its integral.

From calculus, we expect:

$$\int_{a}^{b} x \, dx = \frac{b^2 - a^2}{2}$$

The Riemann Sum Calculation

The Riemann sum for f(x) = x with N subintervals is:

$$RiemannSum(x, a, b, N) = \frac{b - a}{N} \sum_{i=0}^{N-1} \left(a + \frac{(i+1)(b-a)}{N} \right)$$
(4)

$$= \frac{b-a}{N} \sum_{i=0}^{N-1} \left(a + \frac{(i+1)(b-a)}{N} \right)$$
 (5)

$$= \frac{b-a}{N} \left[Na + \frac{b-a}{N} \sum_{i=0}^{N-1} (i+1) \right]$$
 (6)

$$= (b-a)a + \frac{(b-a)^2}{N^2} \sum_{i=1}^{N} i$$
 (7)

$$= (b-a)a + \frac{(b-a)^2}{N^2} \cdot \frac{N(N+1)}{2}$$
 (8)

$$= (b-a)a + \frac{(b-a)^2(N+1)}{2N}$$
 (9)

$$= (b-a)a + \frac{(b-a)^2}{2} + \frac{(b-a)^2}{2N}$$
 (10)

As $N \to \infty$, this approaches:

$$(b-a)a + \frac{(b-a)^2}{2} = a(b-a) + \frac{(b-a)^2}{2} = ab - a^2 + \frac{b^2 - 2ab + a^2}{2} = \frac{b^2 - a^2}{2}$$

Your Challenge

Prove that f(x) = x is integrable on [a, b] for a < b:

IntegrableOn (fun $x \mapsto x$)a b

Hint: Use $(b^2 - a^2)/2$ as your proposed integral value. The key step is showing that the Riemann sum approaches this limit.

The Formal Proof

```
Statement \{a \ b : \mathbb{R}\}\ (hab : a < b) :
    IntegrableOn (fun x \mapsto x) a b := by
use (b^2-a^2)/2
intro \varepsilon h\varepsilon
have bnd : 0 < 2 * \varepsilon / (b - a) ^ 2 := by bound
have bndinv : 0 < 1 / (2 * \varepsilon / (b - a)^2) := by bound
choose N hN using ArchProp bnd
use N
intro n hn
have hn': (N : \mathbb{R}) \leq n := by exact_mod_cast hn
have Npos : (0 : \mathbb{R}) < \mathbb{N} := \text{by linarith } [\text{bndinv}, h\mathbb{N}]
have npos : (0 : \mathbb{R}) < n := by linarith [Npos, hn']
have f1 : (fun N => RiemannSum (fun x => x) a b N) n - (
   b^2 - a^2 - a^2 = (b-a)^2 / (2 * n) := by
  change ((b - a) / n * ( i \in range n, (a + (i + 1) * (
     b - a) / n))) - (b^2 - a^2) / 2 = _
  rewrite [show \sum i \in \text{range n}, (a + (i + 1) * (b - a) /
    (\sum i \in range n, a) +
    \sum i \in range n, ((i + 1) * (b - a) / n) by apply
        sum_add_distrib]
  rewrite [show \sum i \in range n, a = #(range n) \cdot a by
     apply sum_const]
  rewrite [show #(range n) = n by apply card_range]
  rewrite [show \sum i \in \text{range n}, ((i + 1) * (b - a) / n) =
       \sum i \in \text{range } n, (i + 1) * (b - a)) / n by rewrite
      [← sum_div]; rfl]
  rewrite [show (\sum i \in range n, (i + 1) * (b - a)) / n =
       (\sum i \in range n, (i + 1 : \mathbb{R})) * (b - a) / n by
     rewrite [\( \sum_mul \]; rfl]
  rewrite [show \sum i \in range n, ((i : \mathbb{R}) + 1) = n * (n +
     1) / 2 by apply sum_range_add_one]
  field_simp
  ring_nf
rewrite [f1]
```

```
have f2 : 0 \le (b - a) ^2 / (2 * n) := by bound rewrite [abs_of_nonneg f2] field_simp field_simp at hN have f3 : 2 * \varepsilon * n \le 2 * \varepsilon * n := by bound rewrite [show 2 * \varepsilon * n = 2 * n * \varepsilon by ring_nf] at f3 linarith [hN, f3]
```

Understanding the Proof

The proof strategy is to show that the difference between the *n*-th Riemann sum and $(b^2 - a^2)/2$ is exactly $(b - a)^2/(2n)$, which approaches 0 as $n \to \infty$.

Key steps in the computation (f1):

Step 1: We expand the definition of the Riemann sum and separate the sum using sum_add_distrib.

Step 2: We evaluate $\sum_{i=0}^{n-1} a = n \cdot a$ using sum_const and card_range.

Step 3: We factor out constants from the second sum using sum_div and sum_mul.

Step 4: We apply the crucial identity $\sum_{i=0}^{n-1} (i+1) = \frac{n(n+1)}{2}$ from sum_range_add_one

Step 5: Through field simplification and ring normalization, we show that:

RiemannSum
$$(x, a, b, n) - \frac{b^2 - a^2}{2} = \frac{(b - a)^2}{2n}$$

Convergence argument: Since we need $\left|\frac{(b-a)^2}{2n}\right| < \varepsilon$, this is equivalent to $n > \frac{(b-a)^2}{2\varepsilon}$. The Archimedean property guarantees we can find such an N, and the proof shows that for all $n \geq N$, the error bound holds.

and the proof shows that for all $n \ge N$, the error bound holds. This completes the proof that $\int_a^b x \, dx = \frac{b^2 - a^2}{2}$ using the formal definition of Riemann integration.

Last 7 me!, Showed Mut & til ne chose, In 7 F Pointhise if $\forall x$) South (x) f(x),

If all fig are onthor Hen --- $\begin{cases} \frac{1}{2} & \text{on } |0| \\ \frac{1}{2} & \text{on } |$ Inheren's pthise Irmit of Out Contons 17 Cont. (NOT TRUE!), of the court at x,

let k be gihln, C(x)x-8 -x x-18 = 8??. Meed: Haro, 700, Hyxled, 1845x Som me La Loh a d, the Key question 13: F(y) - F(x) \ < 2, tallny nz N (lorge), / F(x)-f(x)ez, taking uz My longe, they safigles.

 $y + f_{n}$ are cont, f_{n} f_{n} Deli, In my 7F1, HE70, 7N, Hx, Huzil, (f(x)-F(x)) C E. Defy from Formtwoll YEYO, YX, JN, YWN, $\left| \int_{N} (\chi) - F(\chi) \right| \subset \mathcal{E},$

Some thous about and, teigi, /f! & Court , 9 court 5) (out (fig), 9/4-2/9/x 22, 9/x xeb.

pfy into x 2 hr Chook E, 7,18 herry h & (gx) & he Chaose & Springlying & En Epor Ne 8, 5 pos. 48: 44, 1x-4cd-3, 194-9x/cE, into y hy
Sperialize ho y hy Sperial. 21 (94) 45 The Cont of Unit only II SIMORAR CON Unitomy to FIRTH (hft) and, Kn, Sn man, (hf)

(ont, fuly) 67 July) Then! (F) X enfor \ F(4)-F(x) \ \ (Mitro Ehr. Chash N hNyft T/3 the lby dans) Spertialite hN N (by band) choose & of or ly uny let N X (E/s) (myself) De 8, Fpos nto y hy have II: Fy-Fyl E 1 FN y - Fy + 1 tn x - th x 1 1 th x 1

have fz: |fNy=Fy|(5/3:-3) have f3: If Nx-FX/ C S/3 lieby
apply hNx boure fy: 1 f Ny - fNx / C & 3603 / No. Yr [f. - fr]. Liste atoni, $\int_{a}^{b} f(x) dx = \lim_{N \to \infty} \int_{i=0}^{N-1} (q+(i+1)\cdot \frac{b-q}{N})$ 5 i = (n-1)(n)

St dx = I (=>) Has Interral & got Three Medin & a d': It flit, This (hubi acle) Italy will on Ida b Mefch, $\frac{1}{a} \times dx = \frac{1}{2} \cdot \frac{1}{a} \cdot \frac{$

k-d 5. (a+(i+i) 5-a) - 8-a) 6-a (N+a) + (b-a) 2 (i+1) $\frac{9}{2} \left[a \left(8 - a \right) + \left(6 - a \right) \left(1 + a \right) - \left(8 - a \right) \right]$ 9(b-a)+(b-a) - (b-a) - 0Chople N LN Samy Archerop en 02 24 day) Monte Man.

Conte Man.

Non boult (b-a) CE.

Zh

Know, nZN,

Z.E.

Z.E.

Z.E.