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Level 1: Sequential Criterion for Limits (Back-

ward Direction)

In this level, we prove the converse direction of the sequential criterion for
function limits. This powerful theorem establishes that if sequences test the
limit and all tests pass, then the function limit exists!

The Sequential Criterion (Backward Direction)

Theorem (SequentialCriterion_Backward): Suppose that for every sequence
(xn) with xn → c and xn ̸= c, we have f(xn) → L. Then limx→c f(x) = L
exists.

This says: if sequences test the limit and all tests pass, then the function
limit exists!

Why This Is Harder

The forward direction was straightforward: we had δ from the function limit
and used it directly.
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For the backward direction, we use a proof by contradiction:

• Assume limx→c f(x) = L is false

• Then there exists ε > 0 such that for every δ > 0, there exists x with
|x− c| < δ, x ̸= c, but |f(x)− L| ≥ ε

• We’ll construct a problematic sequence by choosing such an x for
each δ = 1/n

• This sequence converges to c but f(xn) does not converge to L, con-
tradicting our hypothesis!

The Proof Strategy

Given: For all sequences xn → c with xn ̸= c, we have f(xn) → L.
Want: To show limx→c f(x) = L, i.e., ∀ε > 0,∃δ > 0,∀x ̸= c, |x − c| <

δ ⇒ |f(x)− L| < ε.
How (by contradiction):

1. Assume not: ∃ε > 0 such that ∀δ > 0, the implication fails

2. For each n, take δ = 1
n+1

and get a counterexample xn with |xn − c| <
1

n+1
and |f(xn)− L| ≥ ε

3. Show xn → c (since |xn − c| < 1
n+1

→ 0)

4. By hypothesis, f(xn) → L, which contradicts |f(xn)− L| ≥ ε

The Formal Proof

Statement {f : R → R} {L c : R}
(h : ∀ x : N → R, (∀ n, x n ̸= c) → SeqLim x c →

SeqLim (fun n 7→ f (x n)) L) :

FunLimAt f L c := by

by_contra hf

change ¬ (∀ ε > 0, ∃ δ > 0, ∀ x ̸= c, |x - c| < δ → |f x

- L| < ε) at hf

push_neg at hf

choose ε hε hδ using hf
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choose g hg_ne_c hg_lt_ δ hg using hδ
let x : N → R := fun n 7→ (g (1 / (n + 1)) (by bound))

have hxc : ∀ n, x n ̸= c := by

intro n;

apply (hg_ne_c (1 / (n + 1)) (by bound))

have hx_lim : SeqLim x c := by

intro δ hδ _pos
choose N hN using ArchProp hδ _pos
use N

intro n hn

have f : |x n - c| < 1 / (n + 1) := by apply hg_lt_ δ
(1 / (n + 1)) (by bound)

have f2 : 1 / (n + 1) ≤ δ := by

have hn’ : (N : R) ≤ n := by norm_cast

have f2’ : 0 < 1 / δ := by bound

have hN’ : (0 : R) < N := by linarith [hN, f2 ’]

have npos : (0 : R) < n := by linarith [hN’, hn

’]

have hn’’ : (1 : R) / n ≤ 1 / N := by bound

have hn’’’ : (1 : R) / (n + 1) ≤ 1 / n := by

field_simp; bound

have ff : (1 : R) / N < δ := by field_simp at ⊢
hN; apply hN

linarith [hn’’’, hn’’, ff]

linarith [f, f2]

choose N hN using h x hxc hx_lim ε hε
specialize hN N (by bound)

specialize hg (1 / (N + 1)) (by bound)

linarith [hN, hg]

Understanding the Proof

The proof uses the axiom of choice (via choose) to construct a problematic
sequence. The key steps are:

Step 1: Assume by contradiction that the function limit doesn’t exist,
giving us ε and a function g that produces counterexamples.

Step 2: Construct the sequence xn = g(1/(n+1)) using these counterex-
amples.
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Step 3: Prove xn → c using the Archimedean property and the fact that
|xn − c| < 1/(n+ 1).

Step 4: Apply the hypothesis to get f(xn) → L, but this contradicts
|f(xn)− L| ≥ ε.
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Level 2: Computing a Derivative

We’ve studied limits of functions extensively. Now we apply this knowledge
to one of the most important concepts in calculus: the derivative!

The Definition

Definition (FunDerivAt): We say that f has derivative L at c if:

lim
h→0

f(c+ h)− f(c)

h
= L

This is written FunDerivAt f L c.
Reading the definition: The derivative is the limit of the difference

quotient as h → 0:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h

The Geometric Interpretation

The difference quotient f(c+h)−f(c)
h

is the slope of the secant line through
the points (c, f(c)) and (c+ h, f(c+ h)).

As h → 0, these secant lines approach the tangent line at x = c, and
the derivative is the slope of this tangent line!

Computing a Derivative

Let’s compute the derivative of f(x) = x2 − 1 at x = 2.

5



We need to find the limit:

lim
h→0

f(2 + h)− f(2)

h
= lim

h→0

(2 + h)2 − 1− 3

h
(1)

= lim
h→0

4 + 4h+ h2 − 4

h
(2)

= lim
h→0

4h+ h2

h
(3)

= lim
h→0

h(4 + h)

h
(4)

= lim
h→0

(4 + h) (5)

= 4 (6)

So the derivative is 4!

The Formal Proof

def FunDerivAt (f : R → R) (L : R) (c : R) : Prop :=

FunLimAt (fun h 7→ (f (c + h) - f c) / h) L 0

Statement :

FunDerivAt (fun x 7→ x^2 - 1) 4 2 := by

intro ε hε
use ε, hε
intro h hh0 hh

change |((((2 + h) ^ 2 - 1) - (2 ^ 2 - 1)) / h) - 4| < ε
rewrite [show (2 + h) ^ 2 - 1 - (2 ^ 2 - 1) = 4 * h + h

^ 2 by ring_nf]

rewrite [show (4 * h + h ^ 2) / h = 4 + h by field_simp]

rewrite [show 4 + h - 4 = h - 0 by ring_nf]

apply hh

Understanding the Proof

Given ε > 0, we need to find δ > 0 such that for h ̸= 0 with |h| < δ, we have:∣∣∣∣(2 + h)2 − 1− 3

h
− 4

∣∣∣∣ < ε
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Simplify the difference quotient algebraically:

• (2 + h)2 − 1− 3 = 4 + 4h+ h2 − 4 = 4h+ h2

• So (2+h)2−1−3
h

= 4h+h2

h
= 4 + h (for h ̸= 0)

• Thus
∣∣∣ (2+h)2−1−3

h
− 4

∣∣∣ = |4 + h− 4| = |h|

Therefore, taking δ = ε works perfectly!
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Level 3: The Derivative Function

In the previous level, we computed the derivative of f(x) = x2−1 at a single
point x = 2. Now we’ll prove something much more powerful: we’ll find the
derivative at every point!

From Point Derivatives to Derivative Functions

So far, FunDerivAt f L c tells us that f has derivative L at the specific point
c.

But for most functions, we can compute derivatives at every point, giving
us a derivative function.

The New Definition

Definition (FunDeriv): We say that g is the derivative of f (everywhere) if:

∀x, f has derivative g(x) at x

This is written FunDeriv f g.
In other words: for each point x, the derivative of f at x equals g(x).

The Power Rule

For f(x) = x2 − 1, we’ll prove that f ′(x) = 2x for all x.
This is an instance of the power rule: d

dx
[xn] = n · xn−1.
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Computing the General Derivative

For arbitrary x, we need:

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)2 − 1− (x2 − 1)

h
(7)

= lim
h→0

x2 + 2xh+ h2 − x2

h
(8)

= lim
h→0

2xh+ h2

h
(9)

= lim
h→0

h(2x+ h)

h
(10)

= lim
h→0

(2x+ h) (11)

= 2x (12)

The Formal Proof

def FunDeriv (f : R → R) (g : R → R) : Prop :=

∀ x, FunDerivAt f (g x) x

Statement (f g : R → R) (hf : ∀ x, f x = x ^ 2 - 1) (hg

: ∀ x, g x = 2 * x) :

FunDeriv f g := by

intro x

intro ε hε
use ε, hε
intro h hh0 hh

change |((f (x + h) - f (x)) / h) - g x| < ε
rewrite [hf , hf , hg]

rewrite [show (x + h) ^ 2 - 1 - (x ^ 2 - 1) = 2 * x * h

+ h ^ 2 by ring_nf]

rewrite [show (2 * x * h + h ^ 2) / h = 2 * x + h by

field_simp]

rewrite [show 2 * x + h - 2 * x = h - 0 by ring_nf]

apply hh
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Understanding the Proof

After introducing x, the proof is very similar to Level 2, but with x instead
of 2.

Given ε > 0, we use δ = ε. For h ̸= 0 with |h| < ε, we simplify:

• (x+ h)2 − 1− (x2 − 1) = 2xh+ h2

• 2xh+h2

h
= 2x+ h (for h ̸= 0)

• |(2x+ h)− 2x| = |h| < ε

This establishes the power rule for quadratic functions!
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Level 4: Continuity Everywhere

Just as we moved from derivatives at a point to derivative functions, we can
move from continuity at a point to continuity everywhere!

From Point Continuity to Global Continuity

So far, FunContAt f c tells us that f is continuous at the specific point c.
But many functions (like polynomials) are continuous at every point.

The New Definition

Definition (FunCont): We say that f is continuous (everywhere) if:

∀x, f is continuous at x

This is written FunCont f.
In other words: f is continuous at every point in its domain.

Why Polynomials Are Continuous

Intuitively, polynomials like f(x) = x2 − 1 are continuous because:

• You can draw them without lifting your pen

• Small changes in x produce small changes in f(x)

• There are no jumps, breaks, or asymptotes

We proved earlier that x2− 1 is continuous at x = 2. Now we’ll prove it’s
continuous everywhere!

The Strategy

For any point x, we need to show FunContAt (fun t 7→t^2 - 1)x.
This means: given ε > 0, find δ > 0 such that |t − x| < δ implies

|f(t)− f(x)| < ε.
The algebra is similar to our previous work:

f(t)− f(x) = (t2 − 1)− (x2 − 1) = t2 − x2 = (t− x)(t+ x)
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So |f(t)− f(x)| = |t− x| · |t+ x|.
If we restrict |t− x| < 1, then |t+ x| < |2x|+ 1.

Taking δ = min
(
1, ε

|2x|+1

)
will work!

The Formal Proof

def FunCont (f : R → R) : Prop :=

∀ x, FunContAt f x

Statement :

FunCont (fun x 7→ x^2 - 1) := by

intro x

intro ε hε
let δ := min 1 (ε / (|2 * x| + 1))

have δ 1 : δ ≤ 1 := by bound

have δ 2 : δ ≤ (ε / (|2 * x| + 1)) := by bound

have δ pos : 0 < δ := by

have f1 : 0 ≤ |2 * x| := by bound

have f2 : 0 < |2 * x| + 1 := by bound

bound

use δ , δ pos
intro t ht

change |t ^ 2 - 1 - (x ^ 2 - 1)| < ε
rewrite [show t ^ 2 - 1 - (x ^ 2 - 1) = (t - x) * (t + x

) by ring_nf]

rewrite [show |(t - x) * (t + x)| = |t - x| * |t + x| by

bound]

have ht1 : |t - x| < 1 := by linarith [ht , δ 1]
have ht2 : |t - x| < ε / (|2 * x| + 1) := by linarith [

ht, δ 2]
have ht : |t + x| ≤ |2 * x| + 1 := by

have ht ’ : |t + x| ≤ |t - x| + |2 * x| := by

rewrite [show t + x = t - x + 2 * x by ring_nf]

have f1 : |t - x + 2 * x| ≤ |t - x| + |2 * x| := by

apply abs_add

apply f1

linarith [ht’, ht1]

have ht’ : |t - x| * |t + x| ≤ |t - x| * (|2 * x| + 1)

:= by bound
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have ht’’ : |t - x| * (|2 * x| + 1) < (ε / (|2 * x| + 1)

) * (|2 * x| + 1) := by

field_simp at ⊢ ht2; apply ht2

have ε1 : (ε / (|2 * x| + 1)) * (|2 * x| + 1) = ε := by

field_simp

linarith [ht’, ht’’, ε1]

Understanding the Proof

After introducing x, the proof carefully bounds |t + x| in terms of x (not a
constant).

We use δ = min
(
1, ε

|2x|+1

)
. The key insight is that when |t− x| < 1, we

have:
|t+ x| = |(t− x) + 2x| ≤ |t− x|+ |2x| < 1 + |2x|

This gives us the bound |t+ x| ≤ |2x|+ 1, which allows us to control the
product |t− x| · |t+ x|.

Finally, we get:

|f(t)− f(x)| = |t− x| · |t+ x| < ε

|2x|+ 1
· (|2x|+ 1) = ε

This proves that quadratic polynomials are continuous everywhere!

Conclusion

In this lecture, we’ve established fundamental connections between sequences
and functions, computed derivatives using limits, and proven continuity prop-
erties. We’ve seen that:

• The sequential criterion provides a powerful tool for proving function
limits

• Derivatives capture the local linear behavior of functions

• Polynomial functions exhibit smooth, continuous behavior everywhere

These results form the foundation for more advanced topics in real analy-
sis and calculus, bridging the discrete world of sequences with the continuous
world of functions.
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