An Introduction to Formal Real
Analysis, Rutgers University, Fall
2025, Math 311H

Lecture 20: Limits and Continuity of Functions

Prof. Alex Kontorovich

This text is automatically generated by LLM from
“Real Analysis, The Game”, Lecture 20

SIMPLICIO: FUNCTIONS!!!
SOCRATES: Oh please don’t shout, I'm standing right here.

SIMPLICIO: Sorry! I just got a little over excited that we’re moving on to
functions. Please tell me about them!

SOCRATES: Ah, right. Very good. Let’s start at the beginning. What’s
the first thing you learn in Calculus?

SIMPLICIO: Hmmm. The derivative?

SOCRATES: Ok, we can see about starting there. Tell me, what does it
mean to compute the derivative of a function f : R — R at some point z = c.

SIMPLICIO: Well, it’s the slope of the tangent line.

SOCRATES: Yes, of course; I mean, what expression are you trying to
evaluate?

SIMPLICIO: Oh! I remember: it’s the limit as h — 0 of (f(x+h)— f(x))/h.
SOCRATES: Which word there is problematic?

SIMPLICIO: Ah, of course; “limit”! We don’t know yet what limits are
for functions. And I already know from experience that you can’t just stick
in h = 0, since both the numerator and denominator vanish.

SOCRATES: Right. So we need to figure out what it means for a limit of
a function to exist. Let’s think about this carefully. What do we want to be
true when we write lim,_,. f(x) = L?

SIMPLICIO: Well, we want f(z) to get close to L when x gets close to c.

SOCRATES: Exactly! Now, do you remember our Engineer and Machinist
from when we discussed sequence limits?

SIMPLICIO: Yes! The Engineer specified a tolerance € > 0 for how close
the output needed to be, and the Machinist replied with how many steps N
were needed to guarantee that tolerance.

SOCRATES: Perfect! Now with functions, there’s a beautiful twist. The
Engineer still specifies a tolerance ¢ > 0 for the output—that is, we want
|f(z) — L| < e. But what do you think the Machinist’s response should be
this time?

SIMPLICIO: Hmm. With sequences, the Machinist said “run the process
for at least N steps.” But with functions, we don’t have “steps”... we have
values of x.

SOCRATES: Precisely! So instead of saying “wait N steps,” how should
the Machinist respond?

SIMPLICIO: Oh! So the Machinist needs to give a tolerance on the input
side, not a number of steps. So he needs to say something like: “make sure
your input x is within distance ¢ of the target point ¢’ 7

SOCRATES: Exactly! The conversation goes like this:

e Engineer: “I need f(x) to be within € of L.”

e Machinist: “No problem! Just make sure your input z is within
distance 0 of ¢, and I'll guarantee your output tolerance.”

And just like with sequences, we say the limit exists if this conversation
can continue for any tolerance € > 0 the Engineer demands—the Machinist
can always respond with some appropriate § > 0.

SIMPLICIO: So the definition would be: for every ¢ > 0, there exists a
d > 0 such that if |z — ¢| < 4, then |f(z) — L| < &7

SOCRATES: Beautifully stated! Yes, that’s almost it. Let’s write out what
you said formally:

lim f(z) = L means: Ve > 0,36 > 0,Vz, |z —¢| < d=|f(x) — L] <¢
Tr—cC
This is called an e-¢ definition. There’s only one problem with this defi-
nition.
SIMPLICIO: Hmm. I really don’t see, what’s wrong?

SOCRATES: Well, think again back to informal calculus. What does it
mean for a function f : R — R to be continuous at x = c.

SIMPLICIO: Ok, that’s when lim,_,. f(x) exists, and is actually equal to
the value of f(c).

SOCRATES: Yes, exactlyl Remember when we spoke of derivatives, we
don’t want to evaluate the limit when A is literally equal to zero, where we
get 0/0. But look again at your definition. Where do you ensure that?

SIMPLICIO: Oh, I see! So we have to update the definition of a limit to
make sure that we don’t actually allow x = ¢. So does this work?

lim f(x) = L means: Ve > 0,30 > 0,Vx # ¢, |z —c| <d=|f(zx) - L| <e

Tr—C

SOCRATES: That’s the ticket! Some people write 0 < |z — ¢| < ¢, but
I think it’ll be easier to just record x # c separately. The set of such z is
called a punctured neighborhood of c—we’ve removed the center point. This
way, the limit only cares about the behavior of f near ¢, not at c.

SIMPLICIO: So this means f(c) doesn’t even need to be defined for the
limit to exist?

SOCRATES: Correct! Remember when you started learning calculus and
had to do things like find the limit of f(z) = £=L as 2 goes to 17

z—1
SIMPLICIO: Yes! This function is undefined at z = 1 (actually in Lean,
as I've learned, it’s perfectly well defined, since 0/0 = 0 — which means
that it’s certainly not continuous there...). But for z # 1, we can factor:
flz) = % =2+ 1. So lim,; f(x) = 2, even though f(1) doesn’t
exist!
And this is exactly like the derivative situation. The difference quotient

w is undefined at h = 0, but we can still take the limit as h — 0.

SOCRATES: Precisely! You’ve understood the key point. The limit tells
us about the tendency of a function as we approach a point, not necessarily
what happens at that point.

SIMPLICIO: So to summarize:
e For limits, we assume |z —¢| < § and x # ¢ (punctured neighborhood)

e For continuity, we only need |z — ¢| < §; this is equivalent to: the limit
exists AND equals f(c).

SOCRATES: You've got it! Let’s go.

Level 1: Introduction to Function Limits

Welcome to Lecture 20! We now shift our focus from sequences to functions.
Just as we studied limits of sequences, we can study limits of functions as
the input approaches a particular point.

The Definition
Definition (FunLimAt): We say that f has limit L at z = c if:

Ve>0,30 >0,Ve #c,|Jv—c| <0 —|f(x)—L|<e¢

This is written FunLimAt f L c. (First the function, then the limit, then
“at” T = c.)

def FunLimAt (f : R—R) (L : R) (¢ : R) : Prop :=
YVe>0, 30 >0, V#ec, Ix-cl <d—=>Ifzx-1LI| <c¢

Reading the definition: For every tolerance £ around the output value
L, there exists a distance § around the input value ¢ such that whenever x
is within § of ¢ (but not equal to ¢), the function value f(x) is within ¢ of L.

The Intuition

The key difference from sequence limits is the condition x # ¢. We care
about what happens near ¢, but not at all about what happens at ¢. The
function might not even be defined at ¢!

This is exactly what happens with the classic example:

2t —1

flo) ==

At z = 1, the function is “undefined” (because it’s 0/0; in Lean, this is
equal to 0). But for z # 1, we can factor:

So as = approaches 1, f(x) approaches some constant L. Your job: figure
out L, and prove that it’s the limit!

Your Challenge

Prove that there exists a limit L such that:
FunLimAt (fun x — (x? - 1)/(x - 1)) L 1
In other words, prove that the function f(z) =
approaches 1.

z2—1
x—1

has some limit as =

The Formal Proof

Statement
4 L, FunlLimAt (fun x+— (x°2 - 1)/(x - 1)) L 1 := by
use 2
intro € he
use ¢, he
intro x hxc hx
change [(x =~ 2 - 1) / (x - 1) - 2| < ¢
have f1 : x - 1 # 0 := by bound
rewrite [show (x =~ 2 - 1) / (x - 1) = x + 1 by
field_simp; ring_nf]
rewrite [show x + 1 - 2 = x - 1 by ring_nf]
apply hx

Understanding the Proof

Step 1: We use L = 2.
Step 2: Given € > 0, we choose § = €.

Step 3: For any = # 1 with | — 1] < J, we need to show

z2—1
— — 2‘ < e.

Step 4: Since x # 1, we have v — 1 # 0, so we can simplify:

21 -1 1
Pl _ -+l _
r—1 z—1

Step 5: Therefore:

21
a —2':\x+1—2|:]a:—1]<(5:6
r—1
Thus the limit exists and equals 2. O]

Level 2: Continuity at a Point

Excellent work with limits! Now we can define one of the most important
concepts in analysis: continuity.

The Definition

Definition (FunContAt): We say that f is continuous at c if:
Ve > 0,30 > 0,Va, |z —c| <d = |f(z) — flc)] <e

This is written FunContAt f c.

def FunContAt (f : R—R) (¢ : R) : Prop :=
Ve >0, 36 >0, Vx, |Ilx-c|]l <d§d—>I|fx-f£f c| < ¢

Continuity vs. Limits

Notice the subtle but crucial differences from FunLimAt:

1. No z # ¢ condition: We care about all x near ¢, including c itself

2. The limit is f(c): The function value at ¢ must match the limit as z
approaches c¢; we don’t need a separate variable name L for the limit,
since L must be f(c).

In other words: A function is continuous at c if its limit at ¢ exists
and equals f(c).

Why This Matters

The function f(z) = ”C: __11 from the previous level had a limit at x = 1, but
it’s not continuous there (because f(1) =0 # 2 in Lean’s system).
However, the function g(x) = 2 — 1 is continuous everywhere, including

at z = 2!

Your Challenge

Prove that the function f(x) = z* — 1 is continuous at x = 2:

FunContAt (fun x — x? - 1) 2

Hint: Given £ > 0, you need to find § > 0 such that |x — 2| < § implies
(@) - f@)] <=

Note that f(2) =3 and f(z)— f(2) =2 —1-3=2?—4 = (z—2)(z+2).

So |f(z) = F(2) = |z = 2| - |z + 2.

If we restrict x to be within distance 1 of 2 (i.e., 1 < z < 3), then
|z + 2| < 5.

Therefore, if we choose § = min(1,¢/5), we can control |f(z) — f(2)]!

The Formal Proof

Statement
FunContAt (fun x+~ x"2 - 1) 2 := by
intro ¢ he
use min 1 (e / 5)
split_ands
bound
intro x hx
change |x =~ 2 -1 - (2 - 2 - 1)]| < ¢
rewrite [show x =~ 2 - 1 - (2 =~ 2 - 1) = (x + 2) * (x -
2) by ring_nf]

rewrite [show |(x + 2) *x (x - 2)| = [(x + 2)| * |(x - 2)
| by bound]

have f1 : min 1 (¢ / 5) < 1 := by bound

have f2 : min 1 (¢ / 5) < ¢ / 5 := by bound

have hx’ : |x - 2] < 1 := by bound

have hx’’ : |x + 2| < 5 := by

rewrite [abs_1t] at hx’ F
split_ands

linarith [hx’]

linarith [hx’]

have hx’’’ : |x - 2| < e / 5 := by bound

have £f3 : |(x + 2)| * [|(x - 2)|] <5 *x |[(x - 2)| := by
bound

have f4 : 5 * |(x - 2)| <5 *x ¢ / 5 := by bound

rewrite [show 5 * ¢ / 5 = ¢ by bound] at f4

linarith [£f3, f4]

Understanding the Proof

Step 1: Given ¢ > 0, we choose 6 = min(1,&/5). This is positive since both

1>0ande/5>0.
Step 2: For any z with |z — 2| < 4, we have:

[f(2) = f@)] =" =1 =3[= [(z +2)(z = 2)| = [+ 2| - |2 — 2|

Step 3: Since § < 1, we have | — 2| < 1, which implies 1 < z < 3, so
3<z+2<5, giving |x + 2| < 5.

Step 4: Since § < ¢/5, we have |z — 2| < /5.

Step 5: Therefore:

\f<x>—f<2>r=|x+2|~|x—2r<5§=e

Thus f is continuous at 2. O

Level 3: Sum of Continuous Functions

One of the most powerful aspects of continuity is that it behaves well with
respect to algebraic operations. Let’s prove our first continuity theorem:
the sum of continuous functions is continuous!

The Theorem

Theorem (ContFunAtAdd): If f and g are both continuous at ¢, then f + ¢
is continuous at c.

This seems intuitive: if f(z) stays close to f(c) and g(z) stays close to
g(c) when z is near ¢, then their sum should stay close to f(c) + g(c).

The Strategy: The /2 Trick

Given € > 0, we want to make |[(f + g)(z) — (f + g)(c)] < e.
Notice that:

[(f +9)(x) = (f + 9)(©)| = [[(2) + g(x) = f(c) = g(c)|
= [[f(z) = f()] + [9(x) = g(d)]
< |f(@) = ()] +lg(x) = 9(c)]

So if we can make each term less than /2, their sum will be less than !

Since f is continuous at ¢, there exists 6; > 0 such that |z — | < &;
implies |f(z) — f(c)| < e/2.

Since ¢ is continuous at ¢, there exists d; > 0 such that |z — ¢| < o
implies |g(z) — g(c)| < g/2.

Taking 6 = min(dy, d2) ensures both conditions hold simultaneously!

Your Challenge

Prove that if f and g are continuous at ¢, then their sum is continuous at c:
FunContAt f ¢ — FunContAt g ¢ — FunContAt (fun x — f x + g
X) C
Hint: After introducing € and h,, use the hypotheses h; and h, with /2
to choose 9; and ;. Then use min(dq, d2). You'll need to show this is positive
and that it works. The triangle inequality will be your friend!

10

The Formal Proof

Statement ContFunAtAdd {f g : R — R} {c : R}
(hf : FunContAt f c¢) (hg : FunContAt g c)
FunContAt (fun x+— f x + g x) ¢ := by

intro ¢ he

choose d; hd; hf using hf (e / 2) (by bound)

choose d2 hédy hg using hg (¢ / 2) (by bound)

use min 61 d9

split_ands

bound

intro x hx

have hdl : min §; d2 < §1 := by bound
have hxl : |x - ¢l < §; := by bound
have hd2 : min §; d2 < §2 := by bound
have hx2 : |x - ¢c| < d2 := by bound

specialize hf x hxl
specialize hg x hx2

change |f x + g x - (f c + g c)| < ¢

rewrite [show f x + g x - (f ¢ + g c) = (f x - f ¢c) + (g
X - g c) by ring_nf]

have f1 : |(f x - f ¢c) + (gx - gcc)|l < |(f x -1£f c)| +
(g x - g c)| := by apply abs_add

linarith [f1, hf, hg]

Understanding the Proof

Step 1: Suppose f and g are continuous at c¢. Given € > 0, we use the
continuity of f at ¢ with £/2 to obtain d; > 0 such that for all z with
|z — ¢| < 01, we have |f(z) — f(c)| < /2.
Step 2: Similarly, we use the continuity of g at ¢ with €/2 to obtain
d2 > 0 such that for all with |z — ¢| < d2, we have |g(z) — g(c)| < €/2.
Step 3: Let 6 = min(dy,d2). Then § > 0 since both 4; > 0 and d5 > 0.
Step 4: For any x with |z — ¢| < J, we have:

o [x—c|]<d<dy,s0|f(x)— fle) <e/2

o |z—cf <6 <0y s0g(z) —glc)| <e/2

11

Step 5: Therefore, by the triangle inequality:

[(f +9)(z) = (f + 9) (o) = [[f(x) = F(e)] + [g(z) = g()]|
<| () = f() +1g(z) — g(c)]

<_

+E_¢
2 2

Thus f + g is continuous at c.

12

Level 4: Sequential Criterion for Limits (For-
ward Direction)
We now have two notions of limits in our arsenal:

1. Function limits: FunLimAt f L c means f(z) - L asz — ¢

2. Sequence limits: SeqlLim x L means z, — L as n — 00

Could these concepts be connected? It’s mathematics, how could they
not!

In this level, we’ll prove the first half of the Sequential Criterion for
Limits.
The Sequential Criterion (Forward Direction)

Theorem: If f has limit L at ¢, then for every sequence (z,) with x,, — ¢
and z,, # ¢, we have f(x,) — L.
In other words: function limits can be tested using sequences!

Why This Matters

This theorem is incredibly useful because:

e It connects two different limit concepts
e [t lets us use sequence intuition to understand function limits

e [t may be easier to work with certain sequences than with the -9
definition

The Proof Strategy

Given: FunLimAt f L ¢ and a sequence (z,) with z,, — ¢ and z,, # c.
Want: To show f(z,) — L, i.e., for all € > 0, eventually | f(z,) — L| < .
How:

1. Given € > 0, use FunLimAt to get § > 0 such that |z —¢| < d and x # ¢
implies |f(z) — L| < ¢

2. Use SeqLimit to get N such that for all n > N, we have |z, — c| < ¢

3. For n > N, we know x,, # c and |z, — ¢| < 0, so |f(x,) — L| <&

13

Your Challenge

Prove the forward direction of the sequential criterion:

FunLimAt f Lc - (W x : N—=R, (Vn, x n # c) — Seqlim x
¢ — Seqlim (fun n — f (x n)) L)

Hint: After introducing all the hypotheses, introduce € and h.. Use hy
with € to get 0 and its properties. Then use h, with ¢ to get N. Use this N
to show that the sequence f(z,) converges to L.

The Formal Proof

Statement {f : R— R} {L ¢ : R}
(hf : FunLimAt f L c)
vV :N—-R, (Vn, x n# c) — Seqlim x ¢ — SeqlLim (
fun n+— f (x n)) L := by
intro x hxc hx
intro ¢ he
choose 9 hd hfd using hf ¢ he
choose N hN using hx ¢ hd
use N
intro n hn
specialize hN n hn
specialize hxc n
apply hfd (x n) hxc hN

Understanding the Proof

Step 1: Suppose FunLimAt f L c holds. Let x : N — R be a sequence such
that x, # c for all n and z,, — c.

Step 2: To show that f(x,) — L, let € > 0 be given.

Step 3: Since FunLimAt f L c, there exists § > 0 such that for all z
with x # ¢ and |z — ¢| < §, we have |f(z) — L| < e.

Step 4: Since z,, — ¢, there exists N € N such that for all n > N, we
have |z, — c| < 0.

Step 5: For any n > N, we have:

e 1, # ¢ (by hypothesis)

e |z, —c| <J (sincen> N)

14

Step 6: Therefore, by the definition of FunLimAt, we have |f(z,)—L| < ¢.
This shows that f(x,) — L, completing the proof.]

15

Nx#
MQ X- Yo Ay&w) g@,\\ 3370 X<\ LS7

DL

LM £y (7(‘“'\-\7<—1\ ET s ol

Uy SN Tk % L

x-de8 v valde ou Al
\Qﬁgx ~ (§ct 7o>\c* z

Lk (wvl(i \ P oxtgy —(Fc490)

<

"\@K’Q:\\é\%c?“\ < VY a3

