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1 The Mathematical Revolution of 1666

SIMPLICIO: I heard that Newton had a really cool way of calculating .
Can you tell me about it?

SOCRATES: Certainly. It begins around 1665-1666, when Newton was
turning 23 years old. Anything significant about that year?

SIMPLICIO: Isn’t that Newton’s “annus mirabilis”, year of miracles? If
I recall correctly, he was forced to leave Cambridge due to an outbreak of
the Great Plague, and made his most groundbreaking discoveries (calculus,
optics, gravitation, etc) while quarantining in isolation at his family home in
Woolsthorpe.

SOCRATES: Exactly right. And one of the first things he discovered in
that year was a new version of the Binomial Theorem. Tell me, please, what
can one say about (1 + x)"?

SIMPLICIO: Sure thing, if you multiply (1 + z)™ all out, you get

(g) ; @H (2)++ ()



Here (Z) is the “binomial coefficient”, the number of ways of choosing k
things from a bag of n things. Explicitly, (Z) = Wlk), These are just the
numbers in Pascal’s Triangle, and you can easily read off the n-th row.

SOCRATES: Excellent! And do you know sigma notation?
SIMPLICIO: I think so. I could’ve written that same thing as -, (})z*.
In general, if you have some function f : N — R, and you want express
fla)+ fla+1)+...4 f(b), that is, the sum of f(k) as k ranges from some
integer a up to some other integer b, you can write it as Zzza f(E).



SOCRATES: Very good. So we have (1+ )" = > 7_; (})z*. Now, would
you allow me to write this as a sum going all the way out to infinity?

= /n
1 n_ k
Atay=3 ( k) :
k=0

SIMPLICIO: Hmm. Ok, I think I see what you're getting at: Pascal’s
Triangle has implied zeros everywhere outside, so (Z) is just zero once k > n.
So you’ve written it as an infinite sum, even though it secretly terminates
after finitely many terms. But what purpose does extending it serve?
SOCRATES: Well, let me ask you this: can you think of any way of making
sense of this formula when n = —17
SIMPLICIO: Huh? You can’t use binomial coefficients. How do you choose
3 things from -1 things, that makes no sense!
SOCRATES: Ok, sure, but so many great discoveries in mathematics occur
when you realize a way to break the rules, and follow some pattern past
its intended limit (no pun intended). Put yourself in Newton’s shoes, if you
can; what might a genius like him come up with?
SIMPLICIO: Well, we do have this other formula for binomial coefficients,
not in terms of combinatorics, but just as factorials, (Z) = #lk), That still
doesn’t help because what the heck is (—1)! supposed to be?! Oh, but wait!
We can also write this as:

(Z) :n(n—l)(n—Qk):!---(n—k:—l—l)

And in this way, we “bypass” the issue of dealing with (—1)!, and just go
straight to “normal” numbers.

SOCRATES: Can you please write this using product notation?
SIMPLICIO: Sure, it’s just like summation notation but with a II:

(Z) _ %f[l(n—@

SOCRATES: Whoops, are you sure about those bounds in the product?

SIMPLICIO: Argh! It’s so easy to make a silly mistake. After writing
down the formula, I should have checked that I got the right start and end
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values; the counter ¢ should go from 0 to £ — 1, not from 1 to k. Is this

better?
. =
(0) = alo-o
" 0=0

SOCRATES: Perfect. Go on.
SIMPLICIO: Ok, so if we agree to follow this pattern, then we get:

) (_01) = 1, which makes sense because any row of Pascal’s triangle starts

with at 1 = (g); then

o (711) = (—1)/1! = —1, which also makes sense because the next term
in the “cth row” of Pascal’s triangle is always (‘1:) = ¢; then we get:

o () =(-1)(-2)/2! = +1,
o (3) = (=1)(=2)(-3)/3! = —1.

Ok so I see the pattern: it just alternates between +1 and —1, so the
series goes:
(l+z)'=l—-a+2? -2 +2* -2+

SOCRATES: Very good! But does this formula make any actual sense?

How might you test it?

SIMPLICIO: Ok, if that series is supposed to “represent” 1/(1 + x), then
if I multiply the whole thing by (1 + ), I should just get 1. Let’s try it:

I+l —a+2> -2 +2" —2°+...) =2
I'll first multiply everything by 1, then by z, and add them all up.
l—z+2? -2+ 2+ )+ (z—2* +2° — 2t +2°- )

Ok, so if I rearrange terms, then everything cancels out, and only the leading
1 remains. Great!

SOCRATES: Interesting. And are you “allowed” to rearrange terms like
that?

SIMPLICIO: Well... why not?



SOCRATES: Ok, nevermind that for now, you seem to be satisfied that it
makes sense to say that the series 1 —x + 2% — 23+ 2% —2° +- -+ “converges”
(again, whatever that means) to (1 + )~

SIMPLICIO: Come to think of it, I knew this already; it’s just the geometric
series! I know that

LA+ N+ N+
adds up to 1/(1 — \), and the series we have just replaces A with —z.
SOCRATES: Yes, very good. And where might this “belong” in Pascal’s
triangle?
SIMPLICIO: Holy cow! Did we just discover an extension of the triangle,
going “up”?!

SOCRATES: Indeed, and we can in fact continue this pattern for n =
—2,—3,—4, and so on. I'll let you work it out yourself, but we actually get a
whole other Pascal’s triangle (with some negative signs) above the standard
one!



1 -® 15 =86 70 -126 210 -880

1l -4 10 -20 35 -56 84 -120 165

-3 6 -10 15 -21 28 -B6 45 -

S -6 7 -8 9 -10
-1 1 1 -1

See how it still follows the usual rule, that the two numbers above and to
the left or right add to the value just below them?

But let’s try something even more exotic. Can you make the Binomial
Theorem work when n = 1/27?
SIMPLICIO: Whoa, n = 1/2? That’s... really pushing it! But let me try
using the same formula. So (122) = 511 0(1/2 — (). Let me work out the
first few terms:

. (1/2) =1 (as always)
Y 2) (1/2)/1! = 1/2 (again, matches the pattern we already knew)
Y2) = (1/2)(~1/2)/2! = —1/8

/
V%) = (1/2)(~1/2)(-3/2)/3! = 1/16
/

o (! 2) (1/2)( 1/2)( 3/2)(=5/2) _ _ 5
128

(
* (
(
(

/2 _
So (14 z)2=1+1r— 12?2+ Lad — Sat 4.

But wait — this is supposed to be 1+ x7!

SOCRATES: Again, go into Newton’s thinking: how might he go about
justifying whether this formula makes any sense?
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SIMPLICIO: Oh, ok, I think I see! If we square the formula and multiply
everything out, I guess we're supposed to get 14+ — that would justify calling

the series /1 + z.
SOCRATES: Go for it!

SIMPLICIO: Ok, so I want

11 1 5 2
1o — o2 =3 2 4
( +2x 89@ —|—163: 1283: + )

That means squaring every term, and also adding twice every product of
distinct pairs of terms.

SOCRATES: Right. Can you think of a good way of keeping track of
everything?

SIMPLICIO: Oh, I know! Let’s group things by the power of z involved.
The first one is easy: 2 = 1, which you only get from squaring the first
term. So that coefficient is 1.

For the coefficient of !, I can’t square anything involving x’s, so I can
only multiply the x term by the constant term, and of course double it.
That’s just 2 x 1 x %:p = z. So the coefficient of x is 1.

For 22, I get two contributions from constant times quadratic: 2 x 1 x
(—%2?) = —12? and also from the square of the linear term: (%x)z = 122,
So the total coefficient is —i + 411 =0.

Let’s try a few more. To get 22, I need:

e 2x1x £a® = La® (constant times the z* term)

o 2 x 1z x (—42%) = —12® (the x term times the 2? term)

So the total coefficient of 23 is é — % =0.

This is amazing! It really seems like all the higher-order terms are can-
celing out perfectly. I bet that will keep happening, and we’ll just get the
square to come out to exactly 1+ x; the formula really works!

So wait, now we get a whole other row in Pascal’s triangle, between rows
0 and 17!



SOCRATES: Beautiful, isn’t it!

SIMPLICIO: Wait, this is all much simpler than I’'m making it. Isn’t this
just the same thing as the Taylor expansion about x = 0 of the function
f(z) =1+ a7 I already know how to do this from Calculus.

SOCRATES: Yes, very good; but Brook Taylor (of Taylor series) did not
prove his general theorem until 1715, a few decades after Newton’s compu-
tation of 7.

SOCRATES: Now, suppose you wanted to compute something like /3 —
can you think of a way of doing it using this formula?

SIMPLICIO: Hmm the function is /1 + z, so I guess I want to set x = 2.
Then I get:

1 1 5
1+2=14+-(2)— (22 4+ —=(2)3 = —(2)* +---
VITE=145(2) - 22+ (2 = —()' +
Adding up these five terms comes out to 11/8 = 1.375, not so close to
V3 ~ 1.73. And the individual terms are not so small, for instance, the last
one, 1o=(2)* = 5/8 = 0.625.

SOCRATES: Well, sure, if you set x to be large, like x > 1, then the powers
of x are also larger and larger (and exponentially so!)... Can you think of

something else you could do?
SIMPLICIO: Ah, I think I see! I know that 3 is near 4, which is a perfect



square. So what if we write

So now if I apply our formula with = —1/4 (which is less than one!), I
guess I'll get:

1 1 1 5
~2( 1+ 2(=1/4) — < (=1/4)* + —(=1/4)° — —(=1/4)* + - -
VB2 (14 5(-14) = (142 + (14 — o1+ )
Taking just these five terms, the fraction on the right comes out to 28379/16384 ~
1.73212, which is impressively close to v/3 ~ 1.7320508. We got 3 decimal
places of accuracy, nice!

SOCRATES: Great! Now you see the power of Newton’s Binomial The-
orem. Ok, so then let’s return all the way back to your original question,
about Newton’s estimate for 7.

SIMPLICIO: Hmmm, 7 is the ratio of circumference to diameter in a circle.

So where am [ supposed to find a length.

SOCRATES: Ah, but what did we learn from Archimedes?

SIMPLICIO: Oh, that « is also an area, not just a length. It’s the area of
a unit circle 7r? where r = 1.

SOCRATES: Beautiful. And could you find a circle’s area lurking some-
where?

SIMPLICIO: I think I see it! Thanks to Descartes, and “Cartesian” coor-
dinates, we can express the circle as the graph of 2% 4+ y? = 1, or to make it a
function, y = v/1 — 22. So we just have to replace z in our series with —z?.

vVi—z2=1+ o

_——24 “ ..
gl )t

And the area under the curve y = /1 — 22 from x = 0 to x = 1 is a quarter
circle.



Ve
SOCRATES: Luckily, Newton had just invented calculus! So how else could
he compute the area under this curve?

SIMPLICIO: With an integral! So:

1 1 8
2:/ ng;:/ (1_fv__fv__x__5i_...>dx
0 0

I’ll just integrate term by term,...

SOCRATES: Whoa, hang on! Why are you allowed... You know what,
nevermind, sorry. Just go ahead.

SIMPLICIO: Ok, weirdo. Anyway. So integrating term by term, I get:

1

™
4 6 40 112 1152 |,

Wow! So Newton got an infinite series for 7! If I evaluate just these five terms,
and cross multiply by the factor of 4, T get the fraction 32057/10080 ~ 3.180,
not bad!

SOCRATES: Not bad indeed. You know, Simplicio, many math papers
have roughly zero new ideas; they're just doing something nobody bothered
to do before in a slightly newer context. A really good math paper can have
one or two genuinely new ideas. Newton is already on new idea number five,
and he’s still not done!

SIMPLICIO: Ok, so what’s new idea number six?
SOCRATES: Well, remember how you integrated all the way up to x = 17
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In your series,

1

s
4 6 40 112 1152 .

you have all these high powers of x but they’re being “wasted” because you're
setting x to 1. What if instead you only integrated up to, say, z = 1/27?

SIMPLICIO: Ooh, cool! Then the series will converge much more rapidly.
But wait, that changes the geometry. Instead of a quarter-circle, we now

have... a 30 degree sector, which has area 7/12, plus a 30-60-90 triangle —

ah that must be why you suggested x = 1/2 — with area % X % X */75

Good thing we already know how to quickly estimate v/3 to high accuracy!
(Ah, that’s the trade-off: we could set x even smaller, for faster convergence,
but then we’ll need to deal with ever more complicated geometric evaluations;
so x =1/2is a “sweet spot”.) So now:

Ve [ x5 a7 5x? } 1/2
m .

0
o1/ 11y o1 /" 5 (1)’
T2 6\2) 40\2 112 \ 2 1152 \ 2

Again evaluating just these five terms already gives the fraction 9874097 /20643840.
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And now isolating 7w gives the estimate
3
x A 12 x (9874097/20643840 _ %) ~ 3.14161,

which is off by two parts in 100, 000 from the true estimate 7 ~ 3.14159. All
that with just five terms, amazing!

SOCRATES: Yes, Newton was very impressive indeed. Here’s a nice YouTube
video by Veritasium that discusses this whole saga:

https://youtu.be/gM1f1ELvRzc

In fact, a series for 7 similar to this one was discovered two centuries ear-
lier, by the Indian mathematician Madhava of Sangamagrama. And it would
take two more centuries until mathematicians figured out how to rigorously
justify Newton’s work. To do so, they had to figure out:

e What it meant for a sequence of real numbers ag, ai, as, . .. to converge?

e What it meant for a series (that is, sequence of partial sums) ag + a1 +
as + - - - to converge, and could we sum these numbers in any order we

like,

e What it meant for a series involving a variable, like a power series
aop + a1 + asx® + -+ to converge, and if so, what kind of function it
converged to,

e When can we interchange limits with integrals, like integrating term by
term, [(ao+aiz+asz?+)dx--- - [ apdx+ [ ayxda+ [ agz*da+---,

Etc, etc. We have a lot of work to do!
SIMPLICIO: Ok, ok; you've convinced me! On with some actual Real
Analysis please.
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2 The Main Definition

Our first step to making Newton’s argument rigorous is to spell out ezactly
what we mean by a sequence a, converging. It will take a little work to
build up to the definition, and more importantly, why that might seem like
a reasonable definition to have.

But first: for some reason (likely Euler is to blame), mathematics has
two completely different conventions for how to write functions. For general
functions f : R — R, we write f(z), with parentheses. But when we work
with sequences, a,, meaning, ag,a,as,..., we bizarrely switch instead to
subscripts. Why? Historical accident.

A sequence is nothing but a function whose “domain” (that is, the set of
inputs to the function) is the natural numbers; so we will break with tradition
and unify the two conventions, henceforth writing a : N — R for sequences
of real numbers, a(0),a(1),a(2),....

Now, the definition that mathematicians eventually came up with for
what it means for a sequence to converge, was so intricate (at least at first
sight) that it had to be invented twice!

The eventual formulation crystallized through the work of Karl Weier-
strass in the 1860s, who transformed analysis from an intuitive art into a
rigorous science. However, the seeds of this idea appeared much earlier in
the work of Bernard Bolzano. In the 1810s and 1820s, Bolzano was develop-
ing remarkably modern ideas about continuity and limits, but he was too far
ahead of his time for the mathematical community to accept these abstract
concepts. Only by Weierstrass’s time — a half-century later — did these ideas
catch on.

Without further ado, here it is:

Definition 2.1 (Sequence Convergence). Given a sequence a : N — R and a
real number L : R, we write lim a = L and say that the sequence a converges
to L, if: for every € > 0, there exists N : N such that, for all n > N, we have
la(n) — L| < e.

This definition is probably not the first, or second, or tenth thing you
might’ve come up with. But over time, I hope you’ll come to see that it
embodies a beautiful negotiation between precision and effort.

I like to think of it as a conversation between an Engineer and a Machinist.
The Engineer arrives with specifications: “We're going to make this widget,
and I need its length to be 1 foot, with an error tolerance of 1/100 of an inch”.
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The Machinist replies: “Sure, I can do that, but I'll have to run my special
equipment for at least 10 hours to guarantee that tolerance.” The Engineer
replies: “I'm sorry, I misspoke, can we change the tolerance to 1/1000 of an
inch?” The Machinist replies: “Oof, yeah we can do it, but it’ll cost ya. I'll
need at least 40 hours of operation, but after that, I'll guarantee it.”

As long as this conversation can continue regardless of whatever tolerance
€ > 0 the Engineer requires, with the Machinist always being able to reply
with a finite minimum number of hours N, after which the tolerance will be
achieved, we can say that the equipment converges.

Now let’s read Weierstrass’s (or is it Bolzano’s?) definition again. We
have some process that at time n returns a reading a(n) (think: widget
length). Our ultimate goal is to make the length L. If for any tolerance
€ > 0, no matter how small, there will always exist some minimum time N,
so that, for any future time, n > N, we are guaranteed to be within that
tolerance, |a(n) — L| < ¢, that’s exactly the condition under which we’ll say
that the sequence a(n) converges to L.

What makes this definition so powerful is its universality. The Machinist
is essentially promising: “Give me any tolerance requirement, no matter how
stringent, and I can meet it — though I might need more resources (larger V)
for tighter specifications.”

Notice something else about the definition: It makes no mention of some-
thing happening “eventually”, or “at infinity” or any other wishy-washy
squirm words. We have traded the ambiguity of speaking about infinity for
the precision of existential and universal quantifiers. No more hand-waving
about what happens “as n gets large” - instead, we have a concrete challenge:
given any tolerance e, can you find a specific threshold N? That idea was
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the key breakthrough that allowed Calculus to enter the realm of rigorous
mathematics.
In Lean, the definition is written like so:

def Seqlim (a : N—R) (L : R) : Prop :=
YVe>0, dN : N, Vn>N, lan-1L| < ¢

This syntax should be familiar from the have tactic you already know
and love. The special symbol def (instead of have) means that we're about
to define something, and SeqLim is its name (for sequence limit, of course;
but we could have called it whatever we want). Then our assumptions are
a sequence a : N—R and some real number L : R. Then after the colon :
goes our output, which in this case is Prop, that is, a statement (proposition)
that can be true or false. So SeqLim is really a function that takes a sequence
and hypothetical limiting value, and returns true or false based on whether
the condition is satisfied. Then comes a colon-equals :=, after which the
exact condition to be tested is specified. And the condition is what we
already said, for all epsilon, yadda yadda. The big difference is that you
can write have inside a proof, but you can’t write def inside a proof; def
is reserved for making global definitions that can be referenced forever once
they’re introduced.

You may find useful a new tactic called change. It allows you to replace
a goal (or hypothesis) by something that is definitionally equal to it. In our
example here, You will see the goal as SeqLim a L. What are you supposed to
do with that, how can you make progress? Well, if you remember how SeqLim
is defined, then you can replace the goal with the definition, by writing

change Ve > 0, IN : N, Vn >N, |lan - L| < ¢

Lean will then change the goal to its definition. Remember that e, N, and
n are all dummy variables here, so you can have some fun:

change VAlice > 0, JBob : N, Vblah >Bob, |a blah - L| < Alice

And one last tactic you might also find useful is norm_num (for normaliz-
ing numerical values); it evaluates numerical expressions and proves equal-
ities/inequalities involving concrete numbers. For example, if you're stuck
with an 10| at some point, and you want to convert it to plain old 0, try
calling norm_num.

Statement ConstLim (a : N—R) (L : R) (a_const : V n, a
n = L) : Seqlim a L := by
change V ¢ > 0, 3 N : N, Vn >N, |lan-L| < ¢
intro ¢ he
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use 1
intro

n hn

specialize a_const n
rewrite [a_const]
ring_nf

clear

hn a_const n

norm_num

apply

he

You've just completed your first rigorous limit proof! Let’s reflect on
what you accomplished and the key insights from this foundational example.

What you just proved: You showed that if a sequence always out-
puts the same value L, then it converges to L. The Machinist’s response to
any tolerance demand e > 0 is beautifully simple: “I can meet that specifi-
cation immediately with any production run length N, because I'm already
producing exactly what you want!”

Key Insights from this proof:

1. The change tactic: You learned how to unfold a definition to see
what you’re really trying to prove. SeqLim a L became the concrete
epsilon-N condition.

2. The logical structure: The proof followed the natural flow of the
definition:

intro che handled for every ¢ > 0
use 1 provided the witness N (any number works!)

intro n hn handled Vn >N

Then algebraic manipulation showed that la n - L| = |L - LI
= |0
Then numerical normalization gave that 0| = 0, and he finally

proved that |la n - L| < e.

The Beautiful Simplicity: This is the Machinist’s dream scenario—no
matter how demanding the engineer’s tolerance requirements, the constant
factory can satisfy them instantly. There’s no trade-off between precision
and effort because the output is already perfect!

You're building the foundation for all of calculus. Every limit, derivative,
and integral ultimately rests on arguments like this one.
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Let’s step back from the formal Lean proof and understand what we just
proved in plain English.

Theorem (in natural language): If a sequence has the same value for
every term, then it converges to that constant value.

Proof: Suppose we have a sequence a(n) where a(n) = L for all n, and
we want to show that this sequence converges to L.

By definition, we need to show that for any tolerance € > 0, we can find
a point N such that for all n > N, we have |a(n) — L| < e.

This is almost trivially simple: since a(n) = L for every n, we have:

Since 0 < ¢ for any positive ¢, we can choose any N we want (we chose
N =1 in the proof, but N =0 or N = 1000 would work equally well).

Therefore, for any n > N, we have |a(n) — L| = 0 < e, which proves
convergence. QED
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