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Level 1: More Flexible Cauchy

In this level, we strengthen our understanding of absolute convergence by
proving a more flexible version of the Cauchy criterion. This will be essential
for proving the Rearrangement Theorem.

The Theorem

Theorem (StrongCauchy of AbsSeriesConv): If a series converges abso-
lutely, then for any € > 0, there exists N such that for any finite set S C N
whose elements all exceed N, we have:

Z lag| < e
kes

This is stronger than the usual Cauchy criterion, which only considers
consecutive intervals [n, m).



Proof Strategy

The key insight is that if the series of absolute values is Cauchy, then the tail
of the series becomes arbitrarily small. Since all elements of S are beyond
some point N, the sum over S is bounded by the sum over a larger interval
[N, M) where M is chosen large enough to contain all elements of S.

The proof uses:

e The Cauchy criterion for the absolutely convergent series

e The fact that finite sets are bounded, so we can find M containing all
elements of .S

e Monotonicity of sums of nonnegative terms: if S C T', then ), ¢ |ax| <

E:k€T|ak|

New Theorems

e sum_le sum of nonneg: If S C T and 0 < f(i) for all ¢ € T, then

Yies F(D) <2 ier f(7)
e sum le mem of nonneg: If x € S and 0 < f(i) for all ¢ € S, then

f(x) <2 ies I(0)

e mem Ico: For a and b, we have = € [a,b) <> a <z Ax <b

The Formal Proof

Statement StrongCauchy_of_AbsSeriesConv
{a : N— R} (ha : AbsSeriesConv a) {e : R} (he : ¢ >

0) :
4 N, V (S : Finset N), (Vk € 8, k > N) —»> k € S, |
a k|l < e := by
choose M hM using IsCauchy_of_SeqConv ha ¢ he
use M
intro S hS
let sMax := 1 + > k € 8, k
have sMaxIs : sMax = 1 + > k € S, k := by rfl
have kInS : V k € S, k < sMax := by

intro n hn



have f : id n <> k € S, id k := by
apply sum_le_mem_of_nonneg hn (by intro; bound)
change n <> k € 8, k at f
linarith [f, sMaxIs]
by_cases hSne : S.Nonempty
choose kO hkO using hSne

have hk0O’ : M < kO := by apply hS kO hkO

have hk0’’ : kO < sMax := by linarith [kInS kO hkO]
have sMaxBnd : M < sMax := by linarith [hkO’, hkO’’]
specialize hM M (by bound) sMax (by bound)

rewrite [show Series (fun n => |a nl|) sMax - Series (

fun n => |a nl|) M =
> n € Ico M sMax, (la nl|) by apply DiffOfSeries
sMaxBnd] at hM

have fO : 0 <> k € S, la k| := by
apply sum_nonneg; intro n hn; bound
have hMO : 0 <) k € Ico M sMax, la k| := by

apply sum_nonneg; intro k hk; bound
rewrite [show [Y ) k € Ico M sMax, (la k|)| =
> k € Ico M sMax, |la k| by apply abs_of_nonneg hMO]
at hM
have Ssub : S € Ico M sMax := by
intro k hk
rewrite [mem_Icol]
split_ands
apply hS k hk
linarith [kInS k hk]
have f2 : > k € S, la k| <> k € Ico M sMax, la ki
by
apply sum_le_sum_of_nonneg Ssub
intro k hk
bound
linarith [f2, hM]
norm_num at hSmne
rewrite [hSne]
norm_num
apply he



Understanding the Proof

Step 1: Use the Cauchy criterion for the absolutely convergent series to get
M.
Step 2: Define sMax = 1+ ), ok as an upper bound for all elements
in S.
Step 3: Show that all elements k£ € S satisfy M < k < sMax, so
S C [M,sMax).
Step 4: By the Cauchy criterion, D7,y avax) l0x] < e
Step 5: Since S C [M, sMax) and all terms are nonnegative, by sum le_sum_of nonneg:

Slal < Y0 al <

kesS ke[M ,sMax)

Step 6: Handle the edge case where S is empty (then the sum is 0 <
£). O

Why This Matters

This theorem is crucial for understanding rearrangements. It tells us that for
an absolutely convergent series, not just consecutive terms, but any collection
of sufficiently large-index terms has arbitrarily small sum. This is what allows
us to rearrange terms without affecting convergence.



Level 2: Rearrangements

In this level, we introduce the concept of a rearrangement and prove a key
technical lemma about how rearrangements eventually cover all terms.

New Definitions

Definition (Injective): A function f : X — Y is called injective (or
one-to-one) if for all ¢, j, we have f(i) = f(j) =i = j.

Definition (Surjective): A function f: X — Y is called surjective (or
onto) if for all y € Y, there exists x € X such that f(z) =v.

Definition (Rearrangement): A function ¢ : N — N is called a rear-
rangement if it is both injective and surjective (i.e., a bijection).

def Rearrangement (0 : N— N) : Prop := Injective o A
Surjective o

A rearrangement o permutes the natural numbers: it gives us a new
ordering of N. For a sequence a, the rearranged sequence a o ¢ is defined by

(aoo)(n)=a(a(n)).

The Theorem

Theorem (EventuallyCovers_of Rearrangement): If o is a rearrangement,
then for any M € N, there exists N such that for all n > N, the image of o
on {0,1,...,n — 1} contains {0,1,..., M — 1}.

In other words:

range(M) C o(range(n)) for all n > N

Proof Strategy

Since o is surjective, every element j < M appears as o(k;) for some k;. Let
N be larger than all these k; values. Then for any n > N, all the required
preimages are in range(n), so their images cover range(M).

The proof uses the axiom of choice (via choose) to select the preimages
simultaneously.



The Formal Proof

Statement EventuallyCovers_of_Rearrangement
{c : N— N} (ho : Rearrangement o) (M : N)

4 N, Vn >N, (range M) C image o (range n) := by
have surj : V j, 3 n, o n = 3j := ho.2
choose 7 h7 using surj
let N := 1 + > k € range M, 7 k
have hN : N = 1 + > k € range M, 7 k := by rfl
use N

intro n hn m hm

rewrite [mem_image]

use 7 m

split_ands

rewrite [mem_range]

have h7’ : V k € range M, 0 < 7 k
bound

have f : 7 m <) k € range M, 7 k
apply sum_le_mem_of_nonneg hm hrt’

linarith [f, hN, hnl]

apply h7 m

by intro k hk;

by

Understanding the Proof

Step 1: Since o is surjective, for each j there exists n such that o(n) = j.
We use choose to get a right inverse function 7 such that o(7(j)) = j for all
J.

Step 2: Define N = 143 27" 7(k). This is larger than all the preimages
7(0), 7(1),...,7(M —1).

Step 3: For any n > N and any m < M, we have 7(m) < N < n, so
7(m) € range(n).

Step 4: Since o(7(m)) = m, we have m € o(range(n)).

Therefore, range(M) C o(range(n)). O

Intuition

This theorem says that a rearrangement must “eventually catch up” with
the original ordering. Even though ¢ might scramble the order dramatically



at first, if we go far enough along (past N), we’re guaranteed to have seen
all the first M elements.

This is essential for proving that rearranged series behave well: we need
to know that we eventually capture all the early terms.



Level 3 — Big Boss: Rearrangement Theorem

This is the culmination of our study: if a series converges absolutely, then
any rearrangement of its terms converges to the same sum!

The Fundamental Theorem

Theorem (RearrangementThm): If a series > a, converges absolutely, then
for any rearrangement o : N — N, the rearranged series )  a,(,) converges to
the same limit.

In symbols: If AbsSeriesConv a and o is a Rearrangement, then there
exists L such that both SeriesLim a L and SeriesLim (a o o) L.

The Deep Meaning

This theorem reveals a profound truth about infinite summation:

Infinite summation is commutative if (and only if - as we’ll show
next) the series is absolutely convergent.

For absolutely convergent series, we can reorder terms however we like—the
sum remains unchanged. This is what we expect from finite addition, and
absolute convergence is precisely what’s needed to extend this property to
infinite sums.

New Theorems

e Series_image: For an injective function o, we have

Series(a o o,n) = Z ay

keo(range(n))

e sum sdiff: If S; C 95, then

ST @) fa) =) f)

E€S52\51 €S €Sy

e abs sum le sum abs: Triangle inequality for finite sums:

@)<Y 1f (@)

€S €S




Proof Strategy

Let L be the limit of the original series > a,. We need to show that
Y Qo) — L as well.
Given € > 0:

1. Use the strong Cauchy property (which we just proved in Level 1) to get
Ny such that for any set S with elements > Ny, we have ), o |ax| < £/2

2. Use the convergence of Y a,, to L to get Ny such that |Series(a,n)—L| <
e/2 for n > Ny

3. Use EventuallyCovers_of Rearrangement (from Level 2) to get N3
such that for n > N3, we have range(N; + N3) C o(range(n))

4. For n > Ny + Ny + N3 + 1, write:

Series(aod, n)—L = [Series(aoo, n)—Series(a, N1+ Nz)|+[Series(a, N1+ No)— L]

5. The second term is < £/2 by step 1

6. For the first term, use Series_image to rewrite it as a sum over o (range(n))\
range(N; + N)

7. By step 3, the elements in this set difference are all > Ny + N,
8. By the strong Cauchy property (step 2), this sum is < €/2

9. Therefore |Series(aoo,n) — L| < ¢

The Formal Proof

Statement RearrangementThm {a : N -— R} (ha
AbsSeriesConv a) {oc : N — N}

(ho : Rearrangement ¢) : 3 L, SeriesLim a L A
SeriesLim (a o ¢) L := by

choose L hL using Conv_of_AbsSeriesConv ha

use L

split_ands

apply hL

intro € he



apply IsCauchy_of_SeqConv at ha

choose N1 hN1 using ha (e / 2) (by bound)

choose N2 hN2 using hL (e / 2) (by bound)

choose N3 hN3 using EventuallyCovers_of_Rearrangement
ho (N1 + N2)

use N1 + N2 + N3 + 1

intro n hn

specialize hN2 (N1 + N2) (by bound)

specialize hN1 (N1 + N2) (by bound)

rewrite [show Series (a o ¢) n - L =
(Series (a o o) n - Series a (N1 + N2)) +
(Series a (N1 + N2) - L) by ring_nf]
have f1 : |Series (a o ¢) n - Series a (N1 + N2) +
(Series a (N1 + N2) - L)|
< |Series (a o 0) n - Series a (N1 + N2)| +
| (Series a (N1 + N2) - L)| := by apply
abs_add
have f2 : |Series (a o ¢) n - Series a (N1 + N2)| =
> k € image o (range n) \ range (N1 + N2), a ki
:= by
have f : Series (a o ¢) n =) k € image o (range n),
a k :=

Series_image a o ho.l1l n
rewrite [f]
change |  k € image o (range n), a k) -
Q. k € range (N1 + N2), a k)| =
|G. k € image o (range n) \ range (N1 + N2),
a k)|
rewrite [ Finset.sum_sdiff (hN3 n (by bound))]
ring_nf

have f3 : |>. k € image o (range n) \ range (N1 + N2),

a ki
<> k € image o (range n) \ range (N1 + N2), la k|
:= by

apply abs_sum_le_sum_abs

let M := N1 + N2 + 1 + ) k € range n, o0 k

have Mis : M = N1 + N2 + 1 + > k € range n, 0 k := by
rfl

have Mbnd : V k € range n, 0 k < M := by

intro k hk
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rewrite [Mis]
have f : 0 k <) j € range n, 0 j := by
apply sum_le_mem_of_nonneg hk; intro i hi; bound
linarith [f]
have f4 : > k € image o (range n) \ range (N1 + N2), |
a k| <
> k € Ico (N1 + N2) M, l|a k| := by
apply sum_le_sum_of_nonneg
intro i hi
rewrite [mem_Icol]
rewrite [mem_sdiff] at hi
rewrite [mem_range] at hi
rewrite [mem_image] at hi

have hi2 : N1 + N2 < i := by bound

split_ands

apply hi2

have hil : I3 a € range n, 0 a = i := by apply hi.l

choose a ha using hil
rewrite [¥— ha.2]
apply Mbnd a ha.l
intro i hi;
bound
have sNonneg : 0 <) k € range n, o k
apply sum_nonneg
intro i hi
bound
have Mbnd : N1 + N2 < M := by rewrite [Mis]; linarith
[sNonneg]
specialize hN1 M Mbnd
rewrite [DiffOfSeries _ Mbnd] at hN1
have f5 : Y k € Ico (N1 + N2) M, la k| <
> k € Ico (N1 + N2) M, (la k|)| := by bound
linarith [f1, hN2, f2, £3, f4, f5, hN1, hN3]

by

Understanding the Proof

The proof is intricate but follows the strategy outlined above. The key steps
are:
Step 1-3: Obtain three thresholds Ny, Ny, N3 from the three key prop-

11



erties (strong Cauchy, convergence, eventual covering).

Step 4-5: Decompose the difference Series(a o o,n) — L into two parts
and apply the triangle inequality.

Step 6-8: Use Series_image and sum_sdiff to rewrite the first part as
a sum over elements that haven’t been “covered” yet by the rearrangement.

Step 9-12: Show this uncovered set consists only of large indices, then
apply the strong Cauchy property to bound it.

Step 13: Combine all inequalities using linarith to get |Series(aoo, n)—
Ll <e. O

Historical Note

This theorem was known to Augustin-Louis Cauchy and Niels Henrik Abel
in the 1820s, though earlier mathematicians like Dirichlet had worked with
similar ideas. It’s a cornerstone of rigorous analysis and marks a sharp dis-
tinction between finite and infinite operations.

The proof is intricate but beautiful, combining all the machinery we’ve
developed: Cauchy sequences, absolute convergence, the strong Cauchy prop-
erty, and the covering property of rearrangements.

12



Level 4 — Bigger Boss: Conditional Conver-
gence Theorem

We now arrive at one of the most surprising and dramatic results in all of
real analysis: Riemann’s Rearrangement Theorem.

The Shocking Theorem

Theorem (Riemann’s Rearrangement Theorem): If a series > a,, con-
verges but does not converge absolutely (i.e., it is conditionally convergent),
then for any real number L, there exists a rearrangement ¢ such that the
rearranged series ) aq(n) converges to L.

In fact (though we won’t prove this part), there also exist rearrangements
that diverge to +o00, diverge to —oo, or oscillate without converging at all!

Statement

Statement {a : N —+ R} (hal : SeriesConv a) (ha2 : -
AbsSeriesConv a)
V L, 94 (6 : N—N) (ho : Rearrangement o), SeriesLim (
a o o) L := by
sorry

What This Means

This theorem tells us something profound:

If a series is only conditionally convergent, then infinite sum-
mation is as non-commutative as possible!

By cleverly rearranging the terms, we can make the series converge to
literally any value we want. The sum we get depends entirely on the order
in which we add the terms.

A Concrete Example

Consider the alternating harmonic series:

g1t L.t ol
T T3 7175 6 -
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This series converges to In2 = 0.693, but it does not converge absolutely
(since the harmonic series diverges).

By Riemann’s theorem, we can rearrange its terms to make it converge
to:

e 7 (or any other positive number)

0 (or any negative number)

1000000 (or any huge number)
e —1/137 (or any specific target)

Example construction to get 7/4:
Take two positive terms, then one negative:

With the right pattern of positive and negative terms, this rearrangement
converges to /4.

Proof Sketch

The proof (which we leave as sorry) uses a greedy algorithm:
To make the series converge to L:

1. Separate the positive and negative terms: P = {a, : a, > 0} and
N ={a, : a, <0}

2. Since the series converges, a,, — 0, so both positive and negative terms
go to zero

3. Since the series doesn’t converge absolutely, both Y P and > N di-
verge (this requires proof!)

4. Add positive terms until the partial sum just exceeds L
5. Add negative terms until the partial sum just drops below L

6. Repeat: alternately add positive and negative terms to stay close to L

14



7. Since the terms go to zero, the oscillations become arbitrarily small,
and the series converges to L

The formal proof requires careful bookkeeping to define the rearrange-
ment o and show it has the desired properties.

To make a conditionally convergent series > a, diverge to +o0o by re-
arrangement, note that we cannot simply take all the positive terms and
ignore the negative terms—that wouldn’t be a rearrangement at all, since a
rearrangement must include every term of the original series exactly once. In-
stead, use your favorite a greedy algorithm that carefully interleaves positive
and negative terms. For example, start by adding positive terms ay, , ap,, ap,, . - -
until the partial sum exceeds 1. Then add just enough negative terms
Qpy s Gpy, - - - to bring the sum back down, say, to 0. Next, add positive terms
until the sum exceeds 2, then add negative terms to keep the sum above 1.
Continue this pattern: add positive terms until the sum exceeds k, then add
negative terms to keep it above k£ — 1. Since both the positive and nega-
tive series diverge (a key property of conditional convergence), we never run
out of terms of either sign. Moreover, since a,, — 0, each “correction” with
negative terms requires only finitely many terms, and we can ensure every
term appears exactly once in this rearrangement. The partial sums form a
sawtooth pattern that marches steadily upward, with the lower bound in-
creasing by 1 at each stage, guaranteeing divergence to +oo. By sprinkling
in the negative terms strategically, we satisfy the requirement that all terms
appear while still achieving divergence.

Why Both Series Diverge

A key lemma (not proven here): If >~ a,, converges but Y |a,| diverges, then
both the series of positive terms and the series of negative terms must diverge.

Proof idea: If > a < oo (where a = max(a,,0)), then since a, =
al —a, and )" a, < oo, we would have Y a; < oo, hence Y |a,| = > (a} +

a,) < oo, contradiction.

Philosophical Implications

This theorem reveals a fundamental difference between:

15



e Absolutely convergent series: Behave like finite sums—rearrangements

don’t matter

e Conditionally convergent series: Delicate balances where order
matters—rearrangements change everything

It’s a powerful reminder that intuitions from finite mathematics don’t
always extend to the infinite realm. Infinite series are more subtle than they
appear!

Historical Note

This theorem was discovered by Bernhard Riemann in 1854 during his Ha-
bilitation at the University of Géttingen. It was part of his groundbreaking
work on trigonometric series and helped establish modern standards of rigor
in analysis.

The result shocked the mathematical community and demonstrated that
convergence alone is not enough—how a series converges (absolutely vs. con-
ditionally) profoundly affects its properties.

Peter Gustav Lejeune Dirichlet had already observed special cases, but
Riemann gave the complete general theorem. The proof was one of many
contributions in Riemann’s dissertation that revolutionized analysis.

Conclusion

With this theorem, we’ve reached the pinnacle of our study of sequences and
series (before we get to functions). We've seen that:

e Absolute convergence = rearrangement invariance (Level 3)
e Conditional convergence = complete rearrangement chaos (Level 4)

These two theorems together give us a complete dichotomy: a series either
has rearrangement-invariant sum (absolute convergence) or its sum can be
anything we want (conditional convergence). There’s no middle ground!

This is one of the deepest and most beautiful results in real analysis,
revealing the profound difference between absolute and conditional conver-
gence.
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