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1 Iterated Subsequences and Orbits

Let’s warm up to the topics of this lecture with a foundational exercise that
will illuminate the deep connection between iteration and monotonic growth.

Suppose you have a sequence of natural numbers, σ : N → N, and all you
know about it is that it always exceeds the identity:

hσ : ∀n, n < σ(n)

Now, this of course doesn’t mean that σ(n) is itself strictly increasing
(what we call a Subseq). The sequence could jump around all over the place,
as long as its graph stays above that of y = x.

But hopefully it’s “intuitively clear” from hσ that σ eventually blows up,
gets larger and larger over time, just not monotonically so. That is, there
should be some way to “accelerate” σ so that it becomes a Subseq. The only
problem is: how do you actually do this?

1.1 The Key Idea: Orbits

The key idea is that of an orbit. In astronomy, you can imagine looking up
at the sky night after night and trying to track the location of, say, Jupiter
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against the “fixed” stars (celestial sphere). You start your observations with
Jupiter having some “phase-space” (position, velocity) x0; let T be the func-
tion that runs Newtonian dynamics for one day, so that T (x0) is the new
phase-space of Jupiter tomorrow, moving as it does according to Newton’s
laws and gravity. Then T (T (x0)) is the phase space after two days, and so
on. The whole orbit of Jupiter over time is then the sequence:

x0, T (x0), T (T (x0)), T (T (T (x0))), . . .

In mathematics, if you have any function f : X → X that takes an
abstract space X to itself, and you start with some base point x0 : X, then
we will write f [n](x0) for f iterated n times applied to x0. The sequence
n 7→ f [n](x0) is called the “orbit of x0 under the action of f”.

1.2 Application to Our Problem

How does that help us in our present situation? We could start with any base
point n0 : N, and we know from hσ specialized to n = n0 that n0 < σ(n0),
but we have no idea how big σ(n0) is; it could be huge. So how do we ensure
that the next term exceeds σ(n0)? (Want to think about it for a minute
before reading on?)

Given our previous discussion, hopefully you see right away that: if we
were to specialize hσ to n = σ(n0), we would get: σ(n0) < σ(σ(n0)). So now
it’s clear: the way to get larger and larger terms from the sequence σ is to
take the orbit!

1.3 New Tools

1.3.1 Function Iteration: succ iterate

While σ[k](σ(n)) = σ[k+1](n) is true by definition, it takes an argument by
induction to show that if instead of adding a σ on the right, we add it on the
left:

σ(σ[k](n)) = σ[k+1](n)

We’ll spare you the proof of that argument, and give you the theorem
succ_iterate.
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1.3.2 Subsequence from Successor: subseq of succ

To prove that σ is a Subseq, the definition of which speaks of all i < j, it’s
enough to do it one step at a time. The theorem subseq_of_succ says that
it’s enough to show that σ(n) < σ(n+1) holds for all n to conclude Subseq σ.
You can apply this fact to reduce showing Subseq σ to just showing that σ
increases from n to n+ 1.

1.3.3 Tactic: show

The show tactic has syntax show fact by proof. For example, if you want
to rewrite by the fact that σ(σ[n](n0)) = σ[n+1](n0) without a separate have

declaration, you can write:

rewrite [show σ (σ^[n] n 0 ) = σ^[n+1] n 0 by apply

succ_iterate]

1.4 The Mathematical Statement

Theorem (Subseq of Iterate): If a sequence σ : N → N grows faster than
the identity, n < σ(n), then the orbit of any base point n0 : N under σ – this
means the sequence n0, σ(n0), σ

[2](n0), . . . – is a Subseq, that is, is strictly
increasing.

1.5 Strategic Approach

The proof uses the subseq_of_succ theorem to reduce the problem to showing
that consecutive terms in the orbit are strictly ordered. Specifically, we need
to show:

σ[n](n0) < σ[n+1](n0)

The key insight is that σ[n+1](n0) = σ(σ[n](n0)) by the succ_iterate

theorem, and we can apply the hypothesis hσ to the point σ[n](n0) to get the
desired inequality.

1.6 Lean Solution

Statement Subseq_of_Iterate (σ : N→ N) (hσ : ∀ n, n < σ
n) (n 0 : N) :
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Subseq (fun n 7→ σ^[n] n 0 ) := by

apply subseq_of_succ

intro n

specialize hσ (σ^[n] n 0 )

have f : σ (σ^[n] n 0 ) = σ^[n+1] n 0 := by apply

succ_iterate

rewrite [f] at hσ
apply hσ

1.7 Natural Language Proof

Proof: We use the theorem subseq_of_succ, which reduces proving that
a sequence is strictly increasing to showing that consecutive terms satisfy
f(n) < f(n+ 1).

For our orbit sequence n 7→ σ[n](n0), we need to show:

σ[n](n0) < σ[n+1](n0)

By the succ_iterate theorem:

σ[n+1](n0) = σ(σ[n](n0))

Now we apply the hypothesis hσ to the point σ[n](n0):

σ[n](n0) < σ(σ[n](n0)) = σ[n+1](n0)

This completes the proof. QED

1.8 Why This Matters

This result establishes that even non-monotonic sequences can have mono-
tonic subsequences when they satisfy certain growth conditions. The orbit
construction provides a canonical way to extract monotonic behavior from
sequences that grow faster than the identity. This technique will be crucial
for our main theorem about bounded monotonic sequences.
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2 Enhanced Choose: From Existence to Struc-

ture

Do you know the “Twin Prime Conjecture”? A number n : N is called a
Twin Prime if both n and n+ 2 are prime numbers. Let’s call this property

p : N → Prop.

So p is a function that takes a natural number n and returns p(n) = Yes/No,
depending on whether n is a twin prime.

The Twin Prime Conjecture says that there are infinitely many twin
primes; that is, for any bound N , no matter how large, there is always at
least one n > N for which p(n) holds. We would state the conjecture like
this:

h : ∀N,∃n > N, p(n)

Now suppose that we have a hypothesis like this, for some abstract prop-
erty p (if you like, you’re welcome to keep thinking of p(n) as testing whether
n is a twin prime). Given that there are arbitrarily large n’s for which p(n)
holds, how do I get my hands on a subsequence σ : N→N, so that, along
the subsequence, p (σ n) holds, for all n?

2.1 Interpreting Existence as Functions

The idea is that you should interpret h as a collection of functions. Given
a natural number N , the hypothesis h will produce an n for you, but that n
is a function of N , so we should really write n = n(N). But that’s not all!
The hypothesis h also contains a proof that n(N) > N for all N . Do you see
why the statement of h implies the existence of such a function? And lastly,
h also gives us a proof of the fact that, for all N , p(n(N)) holds. So n(N) is
(almost) our desired sequence! (Since it’s funny to write n(N), let’s rename
n to τ , so we can write τ(N).)

The way in Lean to go from h to these sequences is to invoke a familiar
tactic: choose! If you write:

choose τ hτ Bnd hτ P using h

then Lean will add to your goal state:
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τ : N→ N
hτ Bnd : ∀ N, τ (N) > N

hτ P : ∀ N, p (τ N)

Isn’t that cool?! Now you should be able to use the idea from the last
level to make the desired subsequence σ, but you’ll need to think about how
exactly to make it work...

2.2 From Existence to Subsequences

Given this setup, our goal is to construct a subsequence σ : N → N that is
both strictly increasing and preserves the property p. That is, we want:

• σ is a Subseq (strictly increasing)

• p(σ(n)) holds for all n

The challenge is that the function τ extracted by choose satisfies the
property but may not be monotonic. However, we can apply the orbit con-
struction from the previous section to impose monotonic structure.

2.3 The Mathematical Statement

Theorem (Enhanced Choose): For any property p : N → Prop, if there
are arbitrarily large natural numbers satisfying p, then there exists a strictly
increasing subsequence along which p always holds.

Formally: If ∀N,∃n > N, p(n), then ∃σ, Subseq(σ) ∧ ∀n, p(σ(n)).

2.4 Strategic Approach

The challenge is that the function τ extracted by choose satisfies the property
but may not be monotonic. However, we can apply the orbit construction
from the previous section to impose monotonic structure.

The proof follows a natural two-step process:
Step 1: Extract the hidden function. Use choose to convert the

existence statement into concrete functions as shown above.
Step 2: Apply orbit construction. Define σ(n) = τ [n](τ(0)). The

orbit construction ensures σ is strictly increasing (by the result from Section
1), while the choice of starting point τ(0) and the iteration preserve the
property p.
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2.5 Lean Solution

Statement (p : N→ Prop) (h : ∀ N, ∃ n > N, p n) :

∃ σ, Subseq σ ∧ ∀ n, p (σ n) := by

choose τ hτ Bnd hτ P using h

let σ : N→ N := fun n 7→ τ ^[n] (τ 0)

use σ
split_ands

apply Subseq_of_Iterate τ hτ Bnd (τ 0)

intro n

change p (τ ^[n] (τ 0))

rewrite [← show τ (τ ^[n-1] (τ 0)) = τ ^[n] (τ 0) by apply

succ_iterate]

apply hτ P (τ ^[n-1] (τ 0))

2.6 Natural Language Proof

Proof: We extract from the hypothesis h a function τ : N → N along with
proofs that τ(N) > N and p(τ(N)) for all N .

Next, we define our desired subsequence as σ(n) = τ [n](τ(0)), the orbit
of τ starting from the point τ(0).

To verify that σ is a subsequence, we apply the result from Section 1:
since τ(N) > N for all N , the orbit n 7→ τ [n](τ(0)) is strictly increasing.

To verify that p(σ(n)) holds for all n, we use the fact that σ(n) =
τ [n](τ(0)). By the succ_iterate theorem, this equals τ(τ [n−1](τ(0))) when
n > 0. Since p(τ(M)) holds for any M , and τ [n−1](τ(0)) is such an M , we
have p(σ(n)) as required. For n = 0, we have σ(0) = τ(0), and p(τ(0)) holds
by our extraction. QED

2.7 Why This Bridge Matters

This result demonstrates the fundamental pattern of transforming abstract
existence statements into concrete, structured objects. The technique of us-
ing choose to extract hidden functions, then applying construction methods
to impose additional structure, appears throughout formal mathematics.

More specifically, this result provides exactly the tool we need for the main
theorem. When we assume a bounded monotone sequence is not Cauchy, we
obtain an existence statement about persistent gaps. This intermediate result
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shows how to extract from such statements the concrete subsequences needed
to drive our contradiction argument.

The seamless combination of number-theoretic intuition (Twin Prime
Conjecture) with analytic techniques (orbit construction) illustrates how dif-
ferent areas of mathematics reinforce and enrich each other.
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3 Monotone and Bounded Sequences are Cauchy

The fundamental theorem connecting monotonicity, boundedness, and con-
vergence states that every bounded monotone sequence is Cauchy (and hence
convergent). This result is central to real analysis and provides a powerful
tool for establishing convergence without explicitly finding the limit.

The intuition may seem clear: a monotone sequence that is bounded
cannot have persistent gaps, because such gaps would eventually cause the
sequence to exceed its bound. But getting the details just right will take
some work. We postpone to the next section the proof of a “helper lemma”
and jump right in to the main argument.

3.1 Abstraction and Generality

Let a : N → X be a sequence. Wait, what is X here? Well, we’re trying
to work up to the construction of the real numbers, so we’d better not pre-
suppose their existence; so maybe X should be the rationals. On the other
hand, once we prove the fact that monotone bounded sequences are Cauchy,
maybe we’ll want to use that fact for real-valued sequences. So we’ll need to
prove the theorem twice? No, of course not; that’s the beauty of abstraction!

We’ll set X to be an abstract “Type”, but assume things about it like
there’s a linear order (so we can say x ≤ y), and a norm (so we can say
|x|), and that we can add/subtract/multiply/divide elements of X and get
elements of X (that X is a “field”). We’ll just make enough of these as-
sumptions for the proof to work. And then if we want to apply this general
theorem to a rational sequence a : N → Q or a real sequence a : N → R,
Lean will automatically infer that all of the necessary conditions on X are
satisfied in these cases.

3.2 New Tools

3.2.1 Definition: Monotone

A sequence a : N → X (where X is some ordered type) is said to be mono-
tone if a(n) ≤ a(m) whenever n ≤ m.
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3.2.2 Theorem: Monotone of succ

To prove monotonicity, it is enough to prove it one step at a time; that is, if
a(m) ≤ a(m+ 1) holds for all m, then a is Monotone.

3.2.3 Tactic: push neg

The negation of ∀ is ∃, and vice-versa. To push a chain of negations through,
write push_neg.

3.3 The Mathematical Statement

Theorem (IsCauchyOfMonotoneBdd): Let a : N → X be a monotone
sequence that is bounded above by some M : X. Then a is Cauchy.

3.4 Strategic Approach

What could go wrong? Suppose (by contradiction) that the sequence a is
not Cauchy. This will mean that there are arbitrarily late “gaps” of size
ε in the sequence. The iterated gap theorem (see next section/level) then
shows these gaps accumulate without bound, contradicting the boundedness
assumption.

The initial “obvious” steps are these:

1. Assume by contradiction the hypothesis h that a is not Cauchy. So
there exists some ε > 0 such that for any N , we can find m ≥ n ≥ N
with |a(m)− a(n)| ≥ ε. (The push_neg tactic will come in handy here,
and you might want to change at h so Lean sees through the definition
of IsCauchy.)

2. Once you choose this ε, you have the statement: h : ∀N, ∃n ≥N, m ≥
N, |a m - a n| ≥ε. Think hard about what this means: n is actually
a function of N , that is, n = n(N); same with m = m(N). And when
we’re given an N , we also get a proof that n(N) ≥ N , and a proof that
m(N) ≥ n(N), and a proof that |a(m(N))− a(n(N))| ≥ ε. Do you see
why that’s the same as this statement h?

3. Now we can choose using h to extract these maps n(N) and m(N),
except I think the situation is clearer if we rename them to τ(N) and
σ(N). The fact that τ(N) ≥ N can be called hτ and the fact that
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σ(N) ≥ τ(N) is hσ. The fact that |a (σ (N)) - a (τ (N))| ≥ε we can
call hgap.

Now what? I hope the intuition is at least somewhat clear: the sequence
a grows by at least ε from time to time, and is increasing, so after enough of
those “bumps” up by ε, we’ll exceed the claimed upper bound M . But how
do we actually implement this in practice?

Well, start with N = 0. Then we get some value 0 ≤ τ(0) ≤ σ(0) for
which |a(σ(0)) − a(τ(0))| ≥ ε. Of course we can drop the absolute values,
since a is monotonic. How can we continue?

3.5 Postponed Helper Lemma

Once we get our hands on some ε amount of growth, we need to iterate it to
get k · ε growth, for any k:

Theorem (IterateGap): Given (a : N → X) (ha : Monotone a) (ε : X)
(εpos : ε > 0) (τ : N → N) (hτ : ∀n, τ(n) ≥ n) (σ : N → N)
(hσ : ∀n, σ(n) ≥ τ(n)) (hgap : ∀n, ε ≤ |a(σ(n))− a(τ(n))|):

∀k, k · ε ≤ a(σ[k](0))− a(0)

That is, the orbit σ[k](0) is exactly the subsequence along which a is
guaranteed to grow by at least k × ε.

3.6 Lean Solution

Statement IsCauchyOfMonotoneBdd {X : Type*}

[NormedField X] [LinearOrder X] [IsStrictOrderedRing X]

[FloorSemiring X] (a : N→ X) (M : X)

(hM : ∀ n, a n ≤ M) (ha : Monotone a)

: IsCauchy a := by

intro ε hε
by_contra h

push_neg at h

choose τ hτ σ hσ hgap using h

have f1 : ∀ k, k * ε ≤ a (σ^[k] 0) - a 0 := by apply

IterateGap a ha ε hε τ hτ σ hσ hgap

let k : N := ⌈(M - a 0) / ε ⌉+ + 1

have hk’ : (M - a 0) / ε ≤ ⌈(M - a 0) / ε ⌉+ := by bound
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have hk : (M - a 0) / ε < k := by

change (M - a 0) / ε < ( ⌈(M - a 0) / ε ⌉+ + 1 : N);
push_cast; linarith [hk ’]

specialize f1 k

specialize hM (σ^[k] 0)

have f2 : (M - a 0) < k * ε := by field_simp at hk;

rewrite [show k * ε = ε * k by ring_nf ]; apply hk

linarith [f1, f2, hM]

3.7 Natural Language Proof

Proof: We proceed by contradiction. Suppose a is not Cauchy. Then there
exists some ε > 0 such that for every N ∈ N, we can find indices m ≥ n ≥ N
with |a(m)− a(n)| ≥ ε.

That means that we can construct functions τ, σ : N → N such that:

• τ(k) ≥ k for all k

• σ(k) ≥ τ(k) for all k

• |a(σ(k))− a(τ(k))| ≥ ε for all k

By the monotonicity of a and the ordering τ(k) ≤ σ(k), we have a(τ(k)) ≤
a(σ(k)), so:

ε ≤ |a(σ(k))− a(τ(k))| = a(σ(k))− a(τ(k))

Now we can apply the IterateGap theorem to conclude:

∀k ∈ N, k · ε ≤ a(σ[k](0))− a(0)

Choose k = ⌈(M − a(0))/ε⌉+ + 1. Then:

k >
M − a(0)

ε

which implies:
k · ε > M − a(0)

From our gap accumulation result:

k · ε ≤ a(σ[k](0))− a(0)
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Therefore:
M − a(0) < k · ε ≤ a(σ[k](0))− a(0)

This gives us M < a(σ[k](0)), contradicting our assumption that a(n) ≤
M for all n.

Therefore, a must be Cauchy. QED
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4 Iterated Gaps: The Helper Lemma

Now we prove the leftover result from the previous section. This technical
lemma captures the precise mechanism by which persistent gaps in a mono-
tone sequence accumulate under iteration.

Recall our setup: we have a monotone sequence a : N → X and two
subsequences σ, τ : N → N with the properties:

• σ grows faster than τ : σ(n) ≥ τ(n) for all n

• τ grows faster than the identity function: τ(n) ≥ n for all n

• There is some positive ε so that: ε ≤ |a(σ(n))− a(τ(n))|

Our goal is to show that if we iterate σ exactly k times – written in Lean
as σ[k] – then we’ll accumulate at least k · ε growth from the initial value.

4.1 The Mathematical Statement

Theorem (IterateGap): Given a monotone sequence a : N → X and
subsequences τ, σ : N → N satisfying the conditions above, we have:

∀k ∈ N, k · ε ≤ a(σ[k](0))− a(0)

4.2 Strategic Approach

The proof proceeds by induction on k. The key insight is that each iteration
of σ introduces at least an additional gap of size ε, and monotonicity ensures
these gaps accumulate additively.

For the base case k = 0, the statement becomes 0 ≤ a(0) − a(0) = 0,
which is trivial.

For the inductive step, we use the gap condition at the point σ[k](0) to
establish that moving from σ[k](0) to σ[k+1](0) creates an additional gap of
at least ε, which combines with the inductive hypothesis.

4.3 Lean Solution
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Statement {X : Type*} [NormedField X] [LinearOrder X]

[IsStrictOrderedRing X] (a : N→ X) (ha : Monotone a)

(ε : X) (ε pos : ε > 0) (τ : N→ N) (hτ : ∀ n, τ n ≥ n)

(σ : N→ N) (hσ : ∀ n, σ n ≥ τ n)

(hgap : ∀ n, ε ≤ |a (σ n) - a (τ n)|)

: ∀ (k : N), k * ε ≤ a (σ^[k] 0) - a 0 := by

intro k

induction ’ k with k hk

norm_num

specialize hgap (σ^[k] 0)

rewrite [

show |a (σ (σ^[k] 0)) - a (τ (σ^[k] 0))|

= a (σ (σ^[k] 0)) - a (τ (σ^[k] 0))

by apply abs_of_nonneg (by bound)] at hgap

rewrite [show σ (σ^[k] 0) = σ^[k + 1] 0 by apply

succ_iterate] at hgap

have f1 : 0 ≤ a (τ (σ^[k] 0)) - a (σ^[k] 0) := by bound

push_cast

linarith [f1, hk, hgap]

4.4 Natural Language Proof

Proof: We proceed by induction on k.
Base case: When k = 0, we need to show 0 · ε ≤ a(σ[0](0))− a(0). Since

σ[0](0) = 0, this becomes 0 ≤ a(0)− a(0) = 0, which is immediate.
Inductive step: Assume the result holds for some k ≥ 0, so k · ε ≤

a(σ[k](0))− a(0). We must show (k + 1) · ε ≤ a(σ[k+1](0))− a(0).
By the gap hypothesis applied at n = σ[k](0):

ε ≤ |a(σ(σ[k](0)))− a(τ(σ[k](0)))|

Since σ[k](0) ≥ 0 and hτ implies τ(σ[k](0)) ≥ σ[k](0), and hσ implies
σ(σ[k](0)) ≥ τ(σ[k](0)), monotonicity gives us:

a(σ[k](0)) ≤ a(τ(σ[k](0))) ≤ a(σ(σ[k](0)))

Therefore the absolute value equals the difference:

ε ≤ a(σ(σ[k](0)))− a(τ(σ[k](0)))
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Using succ_iterate, we have σ(σ[k](0)) = σ[k+1](0). Also, by monotonic-
ity:

a(τ(σ[k](0)))− a(σ[k](0)) ≥ 0

Combining these inequalities:

a(σ[k+1](0))− a(0) = a(σ[k+1](0))− a(σ[k](0)) + a(σ[k](0))− a(0) (1)

≥ a(σ[k+1](0))− a(τ(σ[k](0))) + a(σ[k](0))− a(0) (2)

≥ ε+ k · ε (3)

= (k + 1) · ε (4)

This completes the induction. QED

4.5 Why This Technical Lemma Matters

This theorem captures the precise mechanism by which monotone sequences
with persistent gaps eventually violate any proposed upper bound. The it-
eration of subsequences, combined with the additive accumulation of gaps,
provides the quantitative tool needed to make the intuitive argument rigor-
ous.

The result demonstrates a fundamental principle: in monotone systems,
local growth patterns (represented by the gap condition) scale linearly under
iteration. This scaling property is what allows us to construct a contradiction
with boundedness in the main theorem.
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Claim: If a sequence `a : N -> X` is Monotone  (non-decreasing, if i <= j, then a i <= a j) and bounded, 
then it is Cauchy.
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