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1 Introduction: Cauchy Sequences and the
Real Numbers

SOCRATES: So far we've learned that if a sequence converges, then it’s
bounded, and moreover that any subsequence of it also converges to the same
limit.

SIMPLICIO: Yeah, so what?

SOCRATES: And we saw that there can be sequences which do not them-
selves converge — for example, (—1)" — but which are bounded and have
subsequences that do converge. The even-indexed terms, in this example,
are all equal 1.

SIMPLICIO: What are you getting at?

SOCRATES: Well, what’s a question that a mathematician might naturally
ask given that information?

SIMPLICIO: You mean whether that always happens?
SOCRATES: Yes, something like that. Can you elaborate?

SIMPLICIO: Okay, I'll play along. You're trying to get me to formulate
some kind of converse. If a sequence is bounded, then... it converges? No,
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that can’t be right — a bounded sequence can bounce around without con-
verging, like (—1)" itself.

Ah, but maybe there’s always some subsequence that converges? Hmm,
but that can’t be right either, since the sequence a,, = n has no convergent
subsequence — it just escapes to infinity.

Oh! But wait, that sequence isn’t bounded. Are you saying that if all
I know about a sequence is that it’s bounded, then there’s always some
subsequence that converges?

SOCRATES: Yes, precisely! This important fact is called the “Bolzano-
Weierstrauss theorem”. But here’s where it gets really subtle. Think about
the sequence of fractions: a(0) = 1/1, a(1) = 14/10, a(2) = 141/100, a(3) =
1414/1000, ... getting closer and closer to 1.4142--- = /2. The sequence
is bounded (by 2, to be crude), and even increasing, but its limit is not a
rational number! So the Bolzano-Weierstrauss theorem is not true for the
rationals. As I warned you long ago, we’ll have to eventually face the fact
that we don’t even know what the real numbers are. 1 think that time is
now.

SIMPLICIO: Fine, I'm ready; tell me what they are.

SOCRATES: Unfortunately, it’s rather complicated, and it’ll take us some
time to arrive at the answer, and to see why it us the answer. Let’s take a
step back. What would you like to be able to say about the real numbers?

SIMPLICIO: Well, I guess I'd like to say something like: they’re the limits
of their decimal expansions. So they’re limits of rational sequences. Like,
V2 is the limit of that sequence you just mentioned: 1,1.4,1.41,1.414, ...

SOCRATES: Good! So you want to define a real number as “the limit of
a sequence of rationals.” But remind me, what does it mean for a sequence
to have a limit?

SIMPLICIO: It means that for all € > 0, there exists an N, yadda yadda.
The terms get arbitrarily close to some number L.

SOCRATES: And what is this mysterious number L7 What type of number
is it?
SIMPLICIO: It’s... a real number. Oh no.

SOCRATES: Exactly! We have a circular definition. We’re trying to de-
fine the real numbers as limits of rational sequences, but the very notion of
“limit” that we’ve been using presupposes that we already know what the



real numbers are!
SIMPLICIO: So we're stuck? We can’t define the real numbers?

SOCRATES: Sure seems like it! But this is where Cauchy had a brilliant
insight. He realized the same thing you did: he can’t use real numbers to
define limits. He wants to say: “a, gets closer and closer to L” but without
reference to L itself. He needs to find something else that he can say a,, gets
close to.

SIMPLICIO: But he has nothing else.
SOCRATES: Exactly!! So...7

SIMPLICIO: So if all he has is the sequence a,, and he has to compare
it to something, and he has nothing else... Oh!!! He has to compare it to
itself!?! But how?

SOCRATES: Wow, you got it! Yes, exactly, How?

SIMPLICIO: Well of course it’s pointless to ask if |a, —a,| < €. But... you
could ask for |a, — a,,| < &, once n and m are both large enough?

SOCRATES: Ha, you did it! Yes, exactly, if a, and a,, are both within ¢
of each other, that should be a substitute for convergence.

SIMPLICIO: That’s so clever! So instead of saying “the sequence converges
to L,” we say “the terms of the sequence get arbitrarily close to each other”?

SOCRATES: Precisely. Can you make this formal, using ’s and N’s?

SIMPLICIO: I think so. I guess we should say that a sequence a,, has a
limit if: for every € > 0, there exists an N such that for all m,n > N, we
have |a,, — a,| < €.

SOCRATES: Beautiful! But since we already have a different meaning for
the notion of “has a limit”, we’ll call this property “Cauchy”. So we say that
a sequence is Cauchy if, as you said:

Ve > 0,3IN,¥Vm > N,Vn > N, |a,, —a,| < ¢

This is one of the most important definitions in all of mathematics. It
appears not only here in real analysis, but also in higher arithmetic when
building the p-adic numbers, in functional analysis when studying Banach
spaces and Hilbert spaces, and in topology and geometry when “completing”
metric spaces. Anywhere mathematicians want to talk about “convergence”
but without knowing a priori where things converge to, they reach for a
version of Cauchy’s definition.



But before we return to the real numbers, let’s first get more familiar
with this definition and what it can do.

SIMPLICIO: I like it; let’s go!



2 Big Boss: Limits are Cauchy

One of the fundamental relationships in analysis is that convergence implies
the Cauchy property. This theorem establishes that any sequence with a
limit satisfies Cauchy’s self-referential criterion for convergence.

2.1 The Mathematical Setup

Definition (IsCauchy): A sequence a : N — R is said to be Cauchy if
for every ¢ > 0, there exists N € N such that for all m,n > N, we have
|, — a,| < €.

Theorem: If a sequence a : N — R converges, then it is Cauchy.

2.2 New Tools

abs_sub_comm: For any real numbers z and y, we have |z —y| = |y — z|.
This symmetry property is crucial for manipulating absolute value ex-
pressions involving differences.

2.3 Strategic Approach
The proof strategy involves:
e Using the convergence hypothesis to get close to the limit L

e Applying the triangle inequality to relate |a,, — a,| to distances from
the limit

e Choosing £/2 when applying the limit definition to ensure the sum
stays below ¢

The key insight is that if both a,, and a,, are within €/2 of L, then they
must be within ¢ of each other.

2.4 Lean Solution

Statement IsCauchy0fLim (a : N — R) (ha : SeqConv a)
IsCauchy a := by
choose L hL using ha



intro ¢ he
choose N hN using hL (e / 2) (by bound)

use N

intro n hn m hm

have hn’ : |la n - L| < ¢ / 2 := by apply hN n hn

have hm’ : |am - L| < ¢ / 2 := by apply hN m hm

rewrite [(by ring_nf la n - am|l = 1](an-L) + (L - a
m) |)]

have f1 : |[(an - L) + (L -aml| < Jlan-L|] +|L -am
| := by apply abs_add

have f2 : |L - a m| = |lam - L| := by apply abs_sub_comm

)

linarith [f1, f2, hn’, hm’]

2.5 Natural Language Proof

Proof: Assume a converges. Then there exists L € R such that a,, — L.
Given € > 0, since a,, — L, there exists N such that for all n > N:

€
a, — L| < =
an — 1] < &
Now for any m,n > N, we have:

| — an| = |(@m — L) + (L — ay)|
<lam — L| + |L — a,|
= |am — L| + |a, — L

L E
2 2
=&

Therefore, a is Cauchy. QED



3 Level 2: Sums of Cauchy Sequences

Just as sums of convergent sequences converge, sums of Cauchy sequences are
Cauchy. This result is important because it shows that the Cauchy property
is preserved under arithmetic operations.

3.1 The Mathematical Setup

Theorem: If sequences a and b are Cauchy, then their sum a + b is also
Cauchy.

3.2 Strategic Approach

The proof follows a similar pattern to the sum of limits theorem:
e Apply the Cauchy property to both a and b with /2
e Take N to be the maximum of the two individual N values

e Use the triangle inequality to combine the estimates

3.3 Lean Solution

Statement IsCauchy0fSum (a b : N—R) (ha : IsCauchy a)
(hb : IsCauchy b)
IsCauchy (a + b) := by
intro ¢ he
choose N1 hN1 using ha (e / 2) (by bound)
choose N2 hN2 using hb (e / 2) (by bound)
use N1 + N2
intro m hm n hn
specialize hN1 m (by bound) n (by bound)
specialize hN2 m (by bound) n (by bound)

change |(am + bm) - (an + bun)l < ¢
rewrite [(by ring_ nf : |[(am + bm) - (an + bn)l = [|(a
m-amn) + (bm-D>bmn)l)]
have f1 : |lam - an + (bm - bn)l < Jam-anl|l + |[(b
m - b n)| := by apply abs_add

linarith [f1, hN1, hN2]



3.4 Natural Language Proof
Proof: Assume a and b are Cauchy sequences.

Given € > 0, since a is Cauchy, there exists N; such that for all m,n > Ny:

€
| — ay| < 3

Similarly, since b is Cauchy, there exists Ny such that for all m,n > Nj:

€
bm_bn a
b = bal <

Let N = Ny + N,. For any m,n > N, we have:

[(a+b)m — (a+0)n] = [(am + bm) — (an + by)|

[(a@m — an) + (b — by)|
- CLn| + |bm - bn|

IA

A

|am
€+6
2 2
€

Therefore, a + b is Cauchy. QED



4 Level 3: Cauchy Implies Bounded

One of the key properties of Cauchy sequences is that they are bounded.
This parallels the result that convergent sequences are bounded, but now we
prove it directly from the Cauchy property without reference to a limit.

4.1 The Mathematical Setup

Theorem: If a sequence a : N — R is Cauchy, then it is bounded.

4.2 Strategic Approach

The proof strategy involves:

e Using the Cauchy property with ¢ = 1 to ensure that eventually all
terms stay within distance 1 of some fixed term

e Handling the finitely many initial terms separately by taking their max-
imum

e Combining these two bounds to get an overall bound for the entire
sequence

The key insight is that a Cauchy sequence is “eventually clustered,” and
we only need to account for finitely many terms before this clustering begins.

4.3 Lean Solution

Statement IsBddOfCauchy (a : N — R) (ha : IsCauchy a)
SeqBdd a := by

choose N hN using ha 1 (by bound)

use |a N| + 1 +> k € range N, |a ki

have aNnonneg : 0 < |a N| := by bound

have sumNonneg : 0 <> k € range N, |a k| := by apply
sum_nonneg (by bound)

have f1 : V n < N, |a n| <> k € range N, |a k| := by

apply TermLeSum a N
split_ands
linarith [aNnonneg, sumNonneg]
intro n



specialize hN N (by bound) n
by_cases hn : n < N
specialize f1 n hn

linarith [f1, aNnonneg]
specialize hN (by bound)

have f2 : |a n| = |[(an - a N) + a N| := by ring_nf

have £f3 : |(a n - a N) + a Nl < |lan - a N| + |Ja N| :=
by apply abs_add

rewrite [(by apply abs_sub_comm : |a n - a N| = |a N - a
nl)] at £3

linarith [f2, £f3, hN, sumNonneg]

4.4 Natural Language Proof

Proof: Assume a is Cauchy.
Since a is Cauchy, taking e = 1, there exists N such that for all m,n > N:

| —ay| <1
In particular, for all n > N:

la, —an| <1
By the triangle inequality:

lan| = |an —an + an| < |a, —an| + |an| < 1+ |an|
For the finitely many terms with n < N, let:
My = max{|ao|, |ai],- .., |lan_1|}
Then for all n € N:
la,| < max{My, 1+ |ax|}

Therefore, a is bounded. QED
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4.5 Significance

This theorem is crucial for the construction of the real numbers. It shows that
Cauchy sequences share a fundamental property with convergent sequences,
even though we haven’t yet established that Cauchy sequences converge (in
the rationals, they don’t always!). This boundedness will be essential when
we eventually prove the Bolzano-Weierstrauss theorem and establish that the
real numbers are “complete” —that is, every Cauchy sequence of real numbers
converges to a real number.
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