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1 Product of Sequences

Having established the Algebraic Limit Theorem for sums and scalar multi-
ples, we now tackle the product of convergent sequences. This result, com-
bined with our earlier work, completes the algebraic structure of limits: we
can add, multiply by constants, multiply sequences together, and even divide
(provided the limit is nonzero).

The proof strategy mirrors the product rule from calculus, where (fg) =
f'g + ¢ f. We artificially introduce terms that allow us to separate the
contributions from each sequence.

1.1 The Mathematical Statement

Theorem (ProdLimNeNe): If a,b: N — R are sequences with a(n) — L,
b(n) — M, where L # 0 and M # 0, and ¢(n) = a(n) - b(n) for all n, then:

cn) - L-M

1.2 Strategic Approach

The key insight is to write:
a(n)-b(n) —L-M = (a(n) —L)-b(n)+ L- (b(n) — M)
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This decomposition separates the error into two parts:
e (a(n) — L) -b(n): the error in a times the value of b
e L-(b(n) — M): the limit L times the error in b

To bound the first term, we use that b is convergent and hence bounded
(by some K > 0). Then |a(n) — L| can be made less than ¢/(2K), giving us
control over the first term.

For the second term, we directly use that b(n) — M, making |b(n) — M|
less than ¢/(2|L]).

1.3 Lean Solution

Statement ProdLimNeNe (a b ¢ : N—R) (L M : R) (hL : L
# 0) (hM : M # 0) (ha : Seqlim a L)
(hb : Seqlim b M) (hc : Vn, ¢cn =amn * b n):
SeqLim ¢ (L * M) := by
intro ¢ he
choose K hK using BddO0fConvNonzero b M hb hM

have €1 : 0 < ¢ / (2 * K) := by bound
have absL : 0 < |L| := by apply abs_pos_of_nonzero hL
have €2 : 0 < ¢ / (2 x |L|) := by bound

specialize ha (¢ / (2 * K)) ¢1
specialize hb (e / (2 *x |L|)) €2
choose N1 hN1 using ha

choose N2 hN2 using hb

use N1 + N2

intro n hn

have hnl : N1 < n := by bound

have hn2 : N2 < n := by bound

specialize hN1 n hni

specialize hN2 n hn2

specialize hc n

rewrite [hc]

have f1 : |a n * bn - L *x M| = |[(an -L) * bn+ (L *
(bn - M)))I| := by ring_nf

have f2 : |[(an - L) * bn+ (L * (bn - M| < |(an -
L) * b nl + |[(L *x (bn - M)| := by apply abs_add



have £f3 : |[(a n - L) * b n|l = |[(an - L)| * |b nl := by
apply abs_mul

have bnBnd : |b n| < K := by apply hK.2 n

have f56 : |[(a n - L)| * |[b nl < e / (2 * K) * K := by
bound

have Kpos : 0 < K := by apply hK.1

have f6 : ¢ / (2 * K) * K = ¢ / 2 := by field_simp

have f7 : |(L * (b n - M))| = |[L| * |[bn - M| := by
apply abs_mul

have f8 : |L| * |[b n - M| < |L| * (¢ / (2 *x |[L|)) :=
by bound

have f9 : |L| * (¢ / (2 * |L|)) = ¢ / 2 := by field_simp

linarith [f1, f2, £f3, f5, f6, f7, £8, £f9]

1.4 Natural Language Proof

Proof: Let ¢ > 0 be given. Since b(n) — M with M # 0, by Bdd0fConvNonzero
, there exists K > 0 such that |b(n)| < K for all n.
Define:
€ = and ¢ =
Yok 2L
Note that ey > 0 (since K > 0) and 5 > 0 (since L # 0 implies |L| > 0).
Since a(n) — L, there exists N such that for all n > Nj:
€
L
a(n) ~ L] <1 = 50
Since b(n) — M, there exists Ny such that for all n > Ny:
€
b(n) — M| < ey = —
Let N := Ny + N,. For any n > N, we have n > N; and n > Ns.
Now, using the algebraic identity:

a(n)-b(n)—L-M = (a(n)—L)-b(n)+ L-(b(n) — M)
Taking absolute values and applying the triangle inequality:

|e(n) = L - M| = [a(n) - b(n) — L - M|
= [(a(n) = L) - b(n) + L - (b(n) — M)
< [(a(n) = L) -b(n)| + |L - (b(n) — M)
= la(n) = L] - [b(n)[ + L] - [b(n) — M|



For the first term, since |b(n)| < K and |a(n) — L| < ¢/(2K):

For the second term, since |b(n) — M| < ¢/(2|L]):

9 €

L|-|b(n) — M| < |L|- =
L1 o) = M| < L] 577 = 5

Therefore:
€

9~ ¢

|c(n)—L-M|<§+

This completes the proof. QED

1.5 Connection to Calculus: Why Add and Subtract
b(n) - L?

The proof technique mirrors the product rule from calculus: (fg)' = f'g+¢'f.
To understand why we add and subtract b(n) - L, think geometrically about
the area of a rectangle. (After all, multiplication is rectangles.)

When both a(n) and b(n) are close to their limits L and M, the product
a(n) - b(n) represents the area of a rectangle with dimensions a(n) by b(n),
while L - M is the area of the limiting rectangle with dimensions L by M.
The difference in areas can be visualized by drawing both rectangles:

b, — M

L a, — L

The total difference is:

a(n)-b(n)—L-M = L-(b(n)— M)+ M- (a(n)— L)+ (a(n) — L) - (b(n) — M)



The key insight is that we can replace M with b(n) in the middle term
(adding and subtracting b(n) - L) to get:

a(n)-b(n) — L-M = (a(n) — L) -b(n)+ L- (b(n) — M)
Why is this better? Because now each term isolates one source of error:
e (a(n) — L) -b(n): small error in a times the bounded quantity b(n)
e L-(b(n)— M): the fixed constant L times small error in b

This decomposition allows us to control each piece separately. The origi-
nal (a(n)—L)-(b(n) — M) term (the small corner rectangle) is absorbed into
(a(n) — L) - b(n), and since b(n) — M is small, this doesn’t hurt us. The ge-
ometric picture explains why this algebraic trick works: we're decomposing
the area difference into manageable pieces, each controlled by making one
sequence close to its limit while the other stays bounded.

1.6 Completing the Algebraic Limit Theorem

This result completes the Algebraic Limit Theorem. Combined with earlier
results on sums, scalar multiples, and reciprocals of sequences with nonzero
limits, we can now compute the limit of any algebraic combination of con-
vergent sequences.

For example, if a(n) — L and b(n) — M, what is the limit of:

a(n)? + 2a(n) + b(n)
3b(n) + 2 — a(n)?

Answer: provided the denominator limit is nonzero, the limit is:

LP+20L+ M
3M 42— L?
This is an extremely powerful theorem that allows us to compute limits

of complex expressions by simply evaluating the algebraic expression at the
limit points.



2 Order Limit Theorem

The Order Limit Theorem establishes a fundamental relationship between
inequalities and limits: if a sequence is bounded above (or below) by a con-
stant, then its limit is also bounded by that constant. This result respects
the order structure of the real numbers.

This theorem is crucial for establishing inequalities involving limits and
is used extensively in analysis to prove comparison theorems, sandwich the-
orems, and other ordering results.

2.1 New Tools
2.1.1 Definition: SeqBddBy

A sequence a : N — R is bounded by M (denoted SeqBddBy a M) if a(n) <
M for all n € N.
Formally:

SeqBddBy(a, M) <= Vn e N,a(n) < M

Note the difference between SeqBdd (bounded: |a(n)| < M) and SeqBddBy
(bounded above: a(n) < M).

2.2 The Mathematical Statement

Theorem (OrderLimLe): If a : N — R converges to L and a(n) < K for
all n, then L < K.

2.3 Strategic Approach

We prove this by contradiction. Assume L > K. Then L — K > 0, and we
can use this positive quantity as our € in the definition of convergence.
By convergence, there exists NV such that for all n > N:

la(n) —L| < L—-K
This means:
L—(L-K)<a(n) <L+ (L-K)

The left inequality gives a(n) > K, which contradicts the assumption
that a(n) < K for all n.



2.4 Lean Solution

Statement OrderLimLe (a : N—R) (L : R) (ha : Seqlim a
L) (K : R) (hK : SeqBddBy a K)

L <K := by
by_contra hL
have hL’ : K < L := by bound
have hLK : 0 < (L - K) := by linarith [hL’]

choose N hN using ha (L - K) hLK

specialize hN N (by bound)

rewrite [abs_1t] at hN

have f1 : L - (L - K) < a N := by linarith [hN.1]
have f2 : K < L - (L - K) := by linarith [hL’]
specialize hK N

linarith [f2, hK, f1]

2.5 Natural Language Proof

Proof: We proceed by contradiction. Assume L > K.
Then L — K > 0. Since a(n) — L, by the definition of convergence with
e =L — K >0, there exists N such that for all n > N:

la(n) = L| <L - K
In particular, taking n = N:
la(N) - L| < L—- K
This is equivalent to:
—(L-K)<a(N)-L<L-K
From the left inequality:
a(N)>L—-(L-K)=K

But by hypothesis, a(N) < K for all N, which contradicts a(N) > K.
Therefore, our assumption that L > K must be false, and we conclude

L < K. QED



2.6 Importance of Order Preservation

This theorem tells us that limits preserve weak inequalities. Note that strict
inequalities are not necessarily preserved: if a(n) < K for all n, we can only
conclude L < K, not L < K.

For example, the sequence a(n) = 1/n satisfies a(n) > 0 for all n, but
lim,, o, a(n) = 0, which is not strictly positive.

The Order Limit Theorem is used to prove:

e The Squeeze Theorem (Sandwich Theorem)
e Monotone Convergence Theorem
e Various comparison tests for series

e Properties of suprema and infima of sequences



3 Subsequences

A subsequence is formed by selecting terms from a sequence while preserving
their order. There are two equivalent perspectives on what a subsequence
is. Most authors refer to a,(,) as a “subsequence of a,” viewing it as a new
sequence extracted from the original. However, we prefer to call o itself the
subsequence—it is the strictly increasing function ¢ : N — N that tells us
which terms to keep. The subsequence of a determined by ¢ is then the
composition a o .

Geometrically, imagine the graph of the original sequence a(n). To form
a subsequence, you drop out some of the terms and slide everybody over to
the left so that every natural number index still has a value. For instance,
if you keep only the terms at positions 0,2,5,7,11,..., you relabel them as
positions 0,1,2,3,4,... in the new sequence. The function o encodes this
relabeling: 0(0) =0, o(1) = 2, 0(2) = 5, and so on. The requirement that
o be strictly monotone increasing (o(i) < o(j) whenever i < j) ensures that
we preserve the original ordering of terms.

The fundamental result is that if a sequence converges, then every sub-
sequence converges to the same limit. This has important consequences:
if a sequence has two subsequences converging to different limits, then the
sequence itself does not converge.

3.1 New Tools
3.1.1 Definition: Subseq

A function o : N — N is a subsequence (denoted Subseq o) if it is strictly
increasing;:

Subseq(c) <= Vi,j eNji<j = o(i) < o(j)
The subsequence of a determined by ¢ is the composition aoo : N — R,
where (a o o)(n) = a(o(n)).
3.1.2 Key Lemma: SubseqGe

If o is a subsequence, then n < o(n) for all n. This can be proved by
induction and captures the intuition that we’re ”"spreading out” the indices.



3.2 The Mathematical Statement

Theorem (SubseqConv): If a : N — R converges to L and 0 : N — N is
a subsequence, then a o o also converges to L.

3.3 Strategic Approach

The proof is remarkably simple. Given € > 0, use convergence of a to find
N such that |a(m) — L| < € for all m > N.

For any n > N, we need to show |(a o 0)(n) — L| < €, which means
la(o(n)) — L| < e.

The key observation is that o(n) > n > N (using the lemma n < o(n)),
so o(n) > N, and therefore |a(c(n)) — L| < e by the convergence of a.

3.4 Lean Solution

Statement SubseqConv (a : N—R) (L : R) (ha : Seqlim a
L) (¢ : N—N) (ho : Subseq o)
SeqLim (a o ¢) L := by
intro ¢ he
choose N hN using ha ¢ he

use N

intro n hn

have f1 : n < o n := by apply SubseqGe ho n
have f2 : N < o n := by linarith [f1, hn]
specialize hN (o n) f£2

apply hN

3.5 Natural Language Proof

Proof: Let ¢ > 0 be given. Since a(n) — L, there exists N such that for all
m > N:
la(m) — L] < ¢

We claim that this same N works for the subsequence a o . That is, for
all n > N:
(aoo)(n)—L| <e
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To see this, let n > N. By the lemma SubseqGe, we have n < o(n).
Therefore:
on)>n>N

Since o(n) > N, we have:
(@0 0)(n) = L| = [a(o(n)) - L[ < ¢

This completes the proof. QED

3.6 Why This Matters

The Subsequence Theorem has several important consequences:

e If a sequence has two subsequences converging to different limits, then
the sequence does not converge. This provides a powerful tool for
proving divergence.

e In the Bolzano-Weierstrass theorem, every bounded sequence has a con-
vergent subsequence. If the full sequence converges, it must converge
to the same limit as any convergent subsequence.

e Subsequences are used to extract "interesting” behavior from sequences,
such as liminf and limsup.

e The concept generalizes to metric spaces and topological spaces, where
it plays a crucial role in compactness arguments.

11



4 Subsequence Example: Oscillating Sequences

We now apply the Subsequence Theorem to a concrete example: the sequence
a(n) = (—=1)", which oscillates between —1 and 1. This sequence does not
converge, as we previously showed, but it has convergent subsequences.

By extracting the even-indexed terms, we obtain a constant subsequence
that converges to 1. Similarly, the odd-indexed terms converge to —1. This
example illustrates how subsequences can exhibit simpler behavior than the
original sequence.

4.1 New Tools
4.1.1 The let Tactic

The 1et tactic is similar to have, but it creates a new named term or function
rather than just proving a proposition. This is useful for defining auxiliary
variables or functions within a proof.

To create a function in Lean, we use the fun keyword (short for “func-
tion”). The syntax is:

fun x ~—expression

which creates a function that takes input x and returns expression. The
arrow — (typed as \mapsto) separates the input variable from the output
expression. (If you prefer, you can type => instead of ~. But I wouldn’t.)
For example, fun x ~»x ~ 2 is the squaring function.

When combined with let, we can name and use such functions:

let £ : R—R:= fun x —x ~ 2

This creates a function £ of type R — R (real numbers to real numbers)
defined by f(z) = 22

In our subsequence example, we write:

let 0: N—N:= fun n +—2 * n

This defines 0 : N — N by o(n) = 2n, which selects the even-indexed
terms.

4.2 The Mathematical Statement

Theorem: If a : N — R is defined by a(n) = (—1)", then there exists
a subsequence o and a limit L such that o is strictly increasing and a o o
converges to L.
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4.3 Strategic Approach

We define o(n) = 2n, which picks out the even indices: 0,2,4,6, ...

First, we verify that o is strictly increasing: if ¢ < 7, then 2i < 2j.

Next, we compute (a0 0)(n) = a(2n) = (—1)>" =1 for all n.

Finally, we show that this constant sequence converges to 1, which is
trivial: for any ¢ > 0, we have |1 — 1| =0 < ¢.

4.4 Lean Solution

Statement (a : N—R) (ha : YV n, an = (-1) ~ n)
4 o0 L, Subseq 0 A Seqlim (a o o) L := by

let ¢ : N—N := fun n+ 2 * n

use o, 1

split_ands

intro i j hij

change 2 *x i < 2 *x j

linarith [hij]

intro ¢ he

use O
intro n hn
change |la (2 * n) - 1| < ¢

specialize ha (2 * n)

rewrite [ha]

have f1 : (-1 : R) =~ (2 * n) = 1 := by bound
rewrite [f1]

norm_num

apply he

4.5 Natural Language Proof

Proof: Define 0 : N — N by o(n) = 2n. We claim that ¢ is a subsequence
and that a o o converges to L = 1.

Step 1: ¢ is a subsequence.

Let 7,7 € N with ¢ < j. Then:

o(i) =2i<2j=0(j)
Therefore o is strictly increasing, hence a subsequence.
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Step 2: a oo converges to 1.
Let € > 0 be given. We claim that for all n > 0:

[(aoo)(n)—1] <e
To see this, note that:
(aoo)(n) =a(o(n)) = a(2n) = (-1)*" = ((-1)*)" =1" =1
Therefore:
[(aoo)(n)—1=]1-1]=0<c¢
This completes the proof. QED

4.6 Implications for Divergence

This example demonstrates that a(n) = (—1)" does not converge. We can
extract subsequences converging to 1 (even indices) and to —1 (odd indices).
Since a convergent sequence must have all subsequences converge to the same
limit, and we have found subsequences converging to different limits, the
sequence a cannot converge.

This technique—showing divergence by exhibiting two subsequences with
different limits—is a powerful tool in analysis.
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