An Introduction to Formal Real
Analysis, Rutgers University, Fall

2025, Math 311H
Lecture 1: The Story of Real Analysis

Prof. Alex Kontorovich

This text is automatically generated by LLM from
“Real Analysis, The Game”, Lecture 1

1 Preamble

SIMPLICIO: What is “Real Analysis”?

SOCRATES: Oh, it’s just Calculus, but done “right”.

SIMPLICIO: Huh? Why does Calculus need a new name? What’s wrong
with it?

SOCRATES: Well, nothing really. Quick: what’s a derivative?
SIMPLICIO: Easy! If I have a function f : R — R and it’s differentiable

at z, then the derivative is f'(x) := limy_ w This represents the

“Instantaneous” slope of the graph of the function y = f(z) at the point

(, f(x)). N

/

SOCRATES: Very good! And tell me please, what is an integral?

1

SIMPLICIO: That’s easy, too! If you want to integrate our function f along
an interval, [a,b], say, you pretend that you have infinitely many, infinitely
small rectangles, work out their areas as base times height, and add them

up:

b N oh_q b—a
lf(x)d:n::]&;r%o' N f<a+j N)

VJFIT TrmELL

SOCRATES: Great. And what are the two Fundamental Theorems of
Calculus?

SIMPLICIO: These too are easy! The first one says that if you make a new
function by integrating f up to a variable amount, x, that is, let

F(z) = /»’U f(t)dt

then the derivative of the new function is just F'(z) = f(z).
SOCRATES: And the second?

SIMPLICIO: The second one says that, conversely, if [is an antiderivative
of f, that is, F'(x) = f(x), then it’s easy to work out the area under the
curve, because

b
/ f(x)dz = F(b) — F(a)

So differentiation and integration are inverse operations!

SOCRATES: Perfect. Now, here’s the problem. You used words like
“limit”, “infinitely many”, “infinitely small”, and so on. What do they ac-
tually mean?

SIMPLICIO: Oh, you know, it’s when something happens “eventually”.
You just have to get used to the feel of it.

SOCRATES: Hmm yes, I see. I agree that that’s an OK way to think of
it, for a while at least, and one that suited Newton (who was quite uncom-
fortable with such words), and Leibniz (who was more care-free here), the
two 17th century inventors of calculus (if you don’t count people like the
ancient Greeks Eudoxus and Archimedes, or the 14th century Indian Mad-
hava... but this isn’t a history lesson). Leibniz taught the Bernoulli brothers
(the world’s “first AP Calc students”!), who taught, among others, the Mar-
quis de I’'Hopital, and the great Leonhard Euler (the first “Calc native”),
who taught the rest of us. All was going quite well... and then came the
19th Century.

SIMPLICIO: Huh? What happened in the 19th Century?
SOCRATES: Well you see, a guy named Augustin-Louis Cauchy came
along (roughly in the 1810s), and started making a fuss that we weren’t
really doing things perfectly “rigorously”. He set out to reprove the theo-
rems of calculus using precise definitions rather than hand-waving. He was
making great progress, including proving statements like: the limit of con-
tinuous functions is continuous.

SIMPLICIO: Sure, that sounds perfectly reasonable. A limit is a continu-
ous process, so you do that to continuous functions, and of course in the end
you should get something continuous, too. No?

SOCRATES: Well, the problem is that around the same time, a guy named

Joseph Fourier was going around claiming that he could add up a bunch of
sines and cosines, and get basically any function he wants, including, say, the
discontinuous sawtooth!

SIMPLICIO: What?!

SOCRATES: Look for yourself: Here’s a graph of Z}ffl Lsin(nx). As you
take 100 out to infinity, Fourier claims that this will get closer and closer to
a sawtooth function!

SIMPLICIO: Whoa. Wait, I can think of an even easier example: just look
at the simplest family of polynomials, f,,(x) = 2", on the unit interval [0, 1].
When you take high powers of any point strictly less than 1, that goes to 0
in the limit, but powers of 1 itself always stay at 1. So the limiting function
is discontinuous, too! What the heck is going on here?

o |

2

0 0

SOCRATES: Very good, Simplicio! Exactly right, between Fourier and
Cauchy, they “broke math”. You break it, you buy it!

SIMPLICIO: Ok, so what’s the right answer, how do you do calculus rig-
orously?

SOCRATES: Not so fast! Things got even worse, and by the mid-19th
century, people realized that we don’t even know what the real numbers are!

SIMPLICIO: What? What do you mean, what are they? Here they are
right here: There’s zero, and one, and —2, and g, and V2, and e and 7.
What’s the problem?

3
L 2 A N
s o /
SOCRATES: Well, do you remember that you need something called the
Intermediate Value Theorem in calculus?

-2 0

SIMPLICIO: Sure, if you have a continuous function, and it goes from
being negative to being positive, then it has to cross zero at some point in
between.

SOCRATES: Very good. Tell me about the function f : z — z? — 2. (We
say: “f maps x to 22 — 2”. Note that we write f : R — R to mean that f
takes real numbers to real numbers, but replace — with — (see the tail on
the second arrow?) when we want to say what happens to a particular input
x under the action of f. Let me remind you that x here is a dummy variable,
so it’s the same function if we’'d said f : u — u? — 2.) In particular, what
happens to f on the rational numbers?

SIMPLICIO: Ok, well if is a rational number, then so is 22, and hence
so is 2% — 2. So actually, we could say that f : Q — Q, that is, f maps
rational numbers to rational numbers. Over the reals, the graph of y = f(x)
is a simple parabola. But you'd asked me about the Intermediate Value
Theorem. Hmm. When z = 0, I know that f(z) will be f(0) = 0* —2 = —2
which is negative. And when z = 2, f(2) = 22 — 2 = 2 which is positive.

SOCRATES: Go on...

SIMPLICIO: So there’s a root of f somewhere between 0 and 2. But the
place where f crosses the z-axis is at z = /2~ 1.41. . ..

SOCRATES: And what did the Pythagoreans know about this number?

SIMPLICIO: Supposedly one of them, Hippasus, figured out that v/2 is
irrational, which ruined their entire theory of geometry and form (they orig-
inally believed that all numbers were rational); legend has it that Hippasus

was drowned at sea for his heresy.
SOCRATES: So...

SIMPLICIO: So wait, if we just restrict to rational inputs, then this parabola
is negative, and then it’s positive, and it never crosses zero?! But there’s
tons of rational numbers almost everywhere you look. So what makes the
real numbers different from the rational numbers, so that the Intermediate
Value Theorem actually holds?

SOCRATES: Ah! Now, my friend, we are ready to begin.

2 Introduction to Lean

2.1 Theorem Prover Software

In this course, we will be using a “proof assistant” called Lean. This is
software that checks that our proofs prove exactly what we claim they prove.
It has other really cool pedagogical features that we’ll get to later. It will
take a little while to get used to the syntax, so until we’re comfortable, we’ll
intersperse exercises teaching Lean with exercises teaching Real Analysis.
Pretty soon all the exercises will just be about Real Analysis.

For this first exercise, we have a hypothesis that we called h (but we
could’ve called it anything, like x_eq_5, or Alice) that says a real number x
equals 5. Our goal is to prove that x equals 5. This shouldn’t be very hard,
but if you don’t know the command, you’ll be out of luck. Our goal is to
prove exactly the same statement as one of the hypotheses. To solve that
goal, the syntax is to write exact, then a space, and then the name of the
hypothesis which exactly matches the goal.

Remark. The exact tactic solves a goal when one of the hypotheses is ezactly
the same as the goal. The syntax is exact hypothesis_name.

Theorem 2.1. If we know that x = 5, then we can prove that x = 5.

Statement (x : R) (h : x = 5) : x = 5 := by
exact h

Hint: Write exact h since the hypothesis h is exactly what we want to
prove.

2.2 Conclusion

Perfect! You've completed your first Lean proof involving real numbers.

Remember: the exact tactic is used when you have exactly what you need
to prove the goal. Look at the top right: your list of tactics now includes
exact, and if you forget how it works or what it does, just click on it for a
reminder.

3 The rfl tactic

3.1 When things are identical to themselves

Sometimes in mathematics, we need to prove that something equals itself.
For example, we might need to prove that 22 + 2y = 2% + 2y.

This isn’t quite the same as our previous exercise. There, we had a
hypothesis h that told us x = 5, and we used exact h to prove the goal
x = b.

But now we don’t have any hypothesis that says x~2 + 2*xy = x"2 + 2xy.
We're just being asked to prove that some expression equals itself. We can’t
say exact something because there’s no something.

Instead, we will use what mathematicians call the reflexive property of
equality: everything is equal to itself. In Lean, if you get to a situation
where you're trying to prove an equality, and the two things on both sides are
identical, then the syntax is to give the command rf1 (short for “reflexivity”).

Try it out!

Remark. The rfl tactic proves goals of the form A = A where both sides are
wdenticall.

Theorem 3.1. Every mathematical expression equals itself.

Statement (x y : R) : x72 + 2%y = x72 + 2%y := by
rfl

Hint: Write rfl since we're proving that something equals itself.

3.2 Conclusion

Excellent! You've learned the rfl tactic.
The key difference:

e Use exact hypothesis_name when you have a hypothesis that matches
your goal exactly

e Use rfl when you need to prove that something equals itself

These are two of the most fundamental tactics in Lean. As we progress
through real analysis, you’ll see that many complex proofs ultimately come
down to showing that two expressions are identical.

8

4 The rw tactic

4.1 Rewriting with equalities

Now let’s learn about rewriting. Suppose you have a hypothesis called Bob
: x = 2, and your goal is to prove that x + y = 2 + y.

Can you use r£1? No, because the two sides of the goal (x + y and 2 + y)
are not identically the same.

Can you use exact Bob? No, because Bob says x = 2, which is not ezactly
what the goal is asking for.

But you can use the hypothesis Bob to rewrite the goal. Since Bob tells
us that x = 2, we can replace x with 2 in our goal.

In Lean, if you have a hypothesis which is an equality, and you want to
replace the left hand side of that equality with the right hand side in your
goal, you use the rewrite tactic. The syntax is:

rewrite [hypothesis_name]

Unfortunately, those square brackets are part of the Lean syntax, and
there’s nothing you or I can do about them right now. Just remember:
rewrite [Bob] means “use the equality in Bob to rewrite the goal.”

After you rewrite, you're not done. But you should know how to finish
from there.

Try it out!

Remark. The rewrite tactic replaces the left-hand side of an equality with
the right-hand side in the goal. The syntax is rewrite [hypothesis_namel,
hypothesis_name2, etc].

Theorem 4.1. If we know that x = 2, then we can prove that x +vy = 2 +y.

Statement (x y : R) (Bob : x = 2) : x +y =2+ y := by
rewrite [Bob]
rfl

Hint: Type rewrite [Bob] to replace x with 2 in the goal. Then what?

4.2 Conclusion

Great! You've learned the rewrite tactic.

Notice what happened: after you typed rewrite [Bob], the goal changed
fromx + y =2+ yto2 + y = 2 + y. Then you needed to type rfl to finish
the proof, since both sides were now identical.

So far you’ve learned:

e exact hypothesis_name when a hypothesis exactly matches your goal
e rfl when you need to prove something equals itself

e rewrite [hypothesis_name] when you want to use an equality to rewrite
your goal

The rewrite tactic is incredibly powerful and you’ll use it constantly in
real analysis!

10

5 The ring_nf tactic

5.1 Algebraic manipulations

Now let’s learn about algebraic simplification. Suppose you need to prove
that (z +) = 2® + 322y + 3xy? + 3.

This is true by the basic laws of algebra - expanding the left side using the
distributive law, commutativity, associativity, etc. But doing this by hand
would be extremely tedious.

Fortunately, Lean has a powerful tactic called ring_nf (“ring normal
form”) that can automatically perform algebraic manipulations like:

e Expanding products

e Collecting like terms

e Rearranging using commutativity and associativity
e Applying the distributive law

When you have an algebraic identity involving addition, subtraction, and
multiplication, ring_nf can often prove it automatically.
Try it out on this classic binomial expansion!

Remark. The ring_nf tactic puts both sides of an equation into a standard

algebraic form and checks if they’re equal.

Theorem 5.1. The binomial expansion: (z +y)> = x® + 3%y + 32y + 3.

Statement (x y : R) : (x + y)~3 = x73 + 3%x72%y + 3*x*y
"2 + y°3 := by
ring_nf

Hint: Write ring_nf to expand and simplify both sides algebraically.

5.2 Conclusion

Excellent! You’ve learned the ring_nf tactic.

This tactic is incredibly powerful for algebraic manipulations. It auto-
matically handles all the tedious algebra that would take many steps to do
by hand.

Your toolkit now includes:

11

e exact hypothesis_name for when a hypothesis exactly matches your
goal

e rfl for proving something equals itself
e rewrite [hypothesis_name] for rewriting using equalities
e ring nf for algebraic simplifications and expansions

As we move into real analysis proper, you'll find that ring_nf is invaluable
for dealing with polynomial expressions, which appear everywhere in calculus!

12

6 The use tactic

6.1 Proving existence

Sometimes in mathematics, you need to prove that something exists. For
example, suppose [wanted to ask you what the binomial coefficient in front
of 2%y? is in the expansion of (z + y)*; how would I do it? Lean can’t ask
questions, it can only prove theorems! So the way I would ask this is: prove
that there exists a real number ¢ such that

(x +19)* = 2* + 42y + cay® + day® + o

The way to prove that such a number exists is to exhibit it, that is, tell
me which number to use, and then prove that that number indeed satisfies
the equation.

This is called an existential statement. In Lean, as in mathematics, ex-
istence is written using 3 (read: “there exists”). This symbol is called the
existential quantifier, and is written in Lean by typing \exists, that is, a
backslash, then the word exists, and then a space. So this goal would look
in Lean like so:

J(c : R), (x+y) 4 = x4 + 4%x"3*%y + c*xx"2xy"2 + 4xx*xy~3 + y~4

To prove an existence statement, you need to provide a specific value that
works. This is where the use tactic comes in.

If you think you know what value of ¢ would work, you can write use 42
(or with 42 replaced by whatever number you think is right). Lean will then
substitute that value and ask you to prove that the resulting equation is true.

Try writing use, then a space, and then a number. Do you see what to
do after that?

Remark. The use tactic provides a specific value to prove an existence state-
ment.

Theorem 6.1. There exists a real number that makes this binomial expansion
work.

Statement (x y : R) : 3 (c : R), (x + y)~4 = x74 + 4x*x
“3%xy + cx*x"2%xy"2 + 4*xx*y~"3 + y~4 := by
use 6
ring_nf

13

Hint: Write use 42, but with 42 replaced by the correct answer. Then
how should you finish?

6.2 Conclusion

Perfect! You've learned the use tactic for existence proofs.
Notice what happened:

1. use 6 told Lean that ¢ = 6 is our proposed value

2. The goal changed to proving (z + y)* = x* + 423y + 62%y* + 4wy + y*
3. ring_nf verified that this algebraic identity is correct

The use tactic is fundamental in real analysis. You'll need it to:

e Find specific values of € and ¢§ in limit proofs

e Construct witnesses for existence theorems

e Provide counterexamples

Your growing toolkit:

e exact, rfl, rewrite for basic equality reasoning

e ring nf for algebraic manipulation

e use for existence proofs

14

7 The intro tactic

7.1 Universal statements

In mathematics, we often need to prove statements that are true “for all”
values of some variable. For example, we might want to prove: “for all ¢ > 0,
we have (¢ +1)? = (¢ + 1)2.” (Of course the condition that ¢ be positive is
mathematically superfluous, and is only here for pedagogical purposes.)

If you're thinking that rfl will do the trick, that’s a good idea, but
it won’t work, because the goal isn’t (yet) an equality. So we need to do
something else first.

In Lean, as in mathematics, “for all” is written using V; this is called the
universal quantifier, and is gotten by typing \forall, that is, backslash, then
forall, then a space. In Lean, this goal looks like so:

Ve>0, (e6+ 1)72 = (e+ 1)"2.

(Note that to write an epsilon in Lean, you just type \e, that is, backslash,
then e, then space.)

To prove a “for all” statement, you need to show that it’s true for an
arbitrary element. In English, you would say: give me an arbitrary e, and
give me the fact that it’s positive (we can give that fact a name, like he,
since it’s a hypothesis about €, or perhaps an even more descriptive name
like e_pos, since the hypothesis is the positivity of). Note that ¢ here is a
dummy variable, and we could choose to name it something else on the fly.
In English, we might say: give me some ¢, but [want to call it Alice; then
give me the fact that Alice is positive, and my goal will be to prove that
(Alice + 1)°2 = (Alice + 1)~2. If we were more polite, we might replace
“give me” above with “introduce”, like: introduce an e, and introduce the
fact, call it he, that ¢ is positive.

In Lean, the syntax for this is the command intro, followed by whatever
name you want to give a dummy variable or a hypothesis.

So: when you see a goal that starts with Vv, you can write intro to
“introduce” the variable. For example:

e intro ¢ introduces the variable €. But look at the goal state now! It
changes to: ¢ > 0 —(e+ 1)°2 = (e+ 1)"2. So we're not done intro-
ducing things.

e Then intro he introduces the hypothesis that e > 0 (and again, you
can call the hypothesis whatever you want; try intro e_pos instead).

15

After using intro twice, the goal will become one that you should know
how to solve.

If you want to be really slick, you can combine the two intro commands
into one: intro che. But don’t feel obliged.

Remark. The intro tactic introduces variables and hypotheses from V state-
ments or implications.

Theorem 7.1. For all positive real numbers, this algebraic identity holds.

Statement : V ¢ : R, ¢ > 0— (¢ + 1)°2 = (¢ + 1)72 := by
intro ¢
intro h
rfl

Hint: Use intro ¢ to introduce the variable, then intro he to introduce
the hypothesis ¢ > 0. Then how do you solve the goal?

7.2 Conclusion

Excellent! You've learned the intro tactic for universal statements.
Notice what happened:

1. intro e introduced the arbitrary real number e

2. intro he introduced the hypothesis he : ¢ > 0

3. The goal became (¢ + 1)°2 = (e+ 1)°2

4. rfl solved the goal, by the reflexive property of the equals sign.

You might have noticed something interesting: we used intro in two seem-
ingly different ways—first to introduce an “Object” (the real number ¢), and
second to introduce an “Assumption” or hypothesis (that ¢ > 0). In Lean’s
underlying logic (“dependent type theory”), there’s actually a deep unity
here that mathematicians call the Curry-Howard correspondence: proposi-
tions are “Types”, and proofs are “Terms” of those Types. This means that
introducing a hypothesis is really just introducing a term of a certain type,
just like introducing a variable.

But here’s an even more mind-bending perspective: our entire Statement
is really a function! Its inputs are first an ¢ : R, then a proof that e > 0, and

16

its output is a proof that (¢ + 1)°2 = (e+ 1)°2. When we write intro e and
intro h, we're literally defining this function by saying “given these inputs,
here’s how to compute the output.” In this view, all of mathematics — from
the simplest definitions to proofs of the deepest theorems — is secretly just
functions transforming inputs into outputs!

This beautiful connection between logic and computation underlies much
of modern proof assistants, though we won’t dive into the details in this
course — it’s perfectly fine if you didn’t follow the last two paragraphs! For
now, just appreciate that intro works uniformly whether you’re introducing
mathematical objects or logical assumptions, and that every proof you write
is secretly a program!

The intro tactic is absolutely crucial in real analysis. You'll use it con-
stantly to:

e Handle “for all € > 0” statements in limit definitions
e Introduce arbitrary points in domain/range proofs
e Work with function definitions

This pattern of intro followed by algebraic manipulation is everywhere
in analysis!

17

8 The specialize tactic

8.1 Using universal statements
Now let’s learn the flip side of intro. You have already learned that:
e if you have 3 in the goal, you write use to provide a specific value. And

e if you have V in the goal, you write intro to introduce an arbitrary
variable

But what if you have V in a hypothesis and you want to use it for a
particular value?
For a concrete example, suppose you have:

e A positive real number t; that is, a real number t, together with a
hypothesis, say, t_pos that t > 0

e A function f : R—R

e A hypothesis hf : Vx > 0, £ (x)= x~2, meaning “for all x positive, f
(x) equals x2”. (Note that you have to put a space after £ before (x)
or else Lean will be very angry with you! In fact, Lean will often drop
unnecessary parentheses, so you'll see £ x instead of £ (x) — and again,
definitely not £(x).)

e And you want to prove the goal £ (t) = t~2.

Can you use exact hf? No! The hypothesis hf says “for all positive =,
f(x) = 2% but the goal asks specifically about £ (t) = t ~ 2. They’re not
exactly the same.

This is where the specialize command comes in. You can write specialize

hf t to specialize the statement hf to the particular value t. This trans-
forms hf from “Vx > 0, f (x)=x ~ 2”7 into “t > 0 —f (t)=t ~ 2”7. Just
like we had to intro multiple times (once for the dummy variable name, and
again to name the hypothesis), we can specialize multiple times; so you can
now write specialize hf t_pos. Or you can kill two birds with one stone
via: specialize hf t t_pos.

I'm sure you can solve the goal from there yourself!

Remark. The specialize tactic applies a universal statement in a hypothesis
to a specific value.

18

Theorem 8.1. If a function of x always equals x*, then it equals t* when
evaluated at t.

Statement (t : R) (t_pos : t > 0) (f : R—R) (hf : V x
>0, £ (x) =x72) ¢ £ (t) = t°2 := by
specialize hf t
specialize hf t_pos
exact hf

Hint: Write specialize hf t to apply the universal statement to the

specific value t.

8.2 Conclusion

Great! You've learned the specialize tactic.
Notice what happened:

1. Initially, hf : Vx > 0, £ (x)= x"2 was a universal statement
2. specialize hf t transformed it intohf : t > 0 —f (t)=t ~ 2

3. Another specialize command, namely specialize hf t_pos turned
the hypothesis hf into hf : £ (t)=t ~ 2

4. And finally, exact hf worked because the hypothesis exactly matched
the goal.

The pattern is:
e intro when you have V in the goal (“introduce an arbitrary term...”)

e specialize when you have V in a hypothesis (“apply the hypothesis to
specific value...”)

This is fundamental in real analysis when working with:
e Function properties that hold “for all x”

e Limit definitions involving “for all £ > 0”

e Continuity statements

Last lesson in Lecture 1 coming up.

19

9

9.1

Big Boss: The Ultimate Tactic Challenge

The Final Challenge

Congratulations! You've learned many fundamental tactics for mathematical
reasoning in Lean:

exact hypothesisName for when a hypothesis matches the goal exactly
rfl for reflexivity (proving X = X)

rewrite [hypothesisName] for rewriting using equalities

ring_nf for algebraic manipulation

use for providing witnesses to existence statements in goals

intro for handling universal quantifiers in goals

specialize for applying universal statements to specific values in hy-
potheses

choose value hypothesisOnValue using ExistentialHypothesis for ex-
tracting information from existence statements in hypotheses

Here’s a little “Universal /Existential Quantifier Cheat Sheet”:

starts with: v 3
Goal intro use
Hypothesis | specialize | choose

Now it’s time for your first Big Boss - a problem that requires you to
use almost ALL of these tactics in a single proof!

World 1 Big Boss Given a function £ and information about its behav-
ior, prove a complex statement that involves existence, universals, algebra,
and rewriting.

This is what real mathematical proofs look like - a careful orchestration
of multiple reasoning steps. You've got this! Use everything you've learned.

Extra Challenge If you want to really challenge yourself, play this level
“blind”. Write the assumptions and goal down on paper, close the computer,
solve it by hand, keeping track in your mind of what happens to the game

20

board after each command, and only once you’ve worked it all out, open the
computer and see if Lean accepts your solution.

Why do you think that this would this be a good thing to do?

In general, I hope your goal in taking this course is to make your “Real
Analysis Brain Muscles” stronger. By the end, you should be really good
at solving Real Analysis problems on paper, where you don’t have Lean
showing you the Goal State after every move. More broadly, the purpose of
learning to solve Real Analysis problems is to learn to think, clearly, precisely.
Strengthening your ability to work with pen and paper (or just mentally)
directly transfers to any other context where you're exploring ideas, wrestling
with complicated arguments, or trying to communicate clearly to others.

An LLM could easily work through all these Lean levels by pattern match-
ing and logical manipulation - just as you could solve multiplication problems
by plugging them into a calculator instead of memorizing your times tables.
But that completely defeats the purpose of the exercise, which is to rewire
your brain and build mathematical intuition. It’s like deciding that you want
to bench press 200 pounds, loading up the bar, and then using a forklift to
lift it for you while you stand underneath - you might have moved the weight,
but you haven’t gotten any stronger. The real value isn’t in producing correct
proofs, it’s in the cognitive transformation that happens when you struggle
through the reasoning yourself, building the mental pathways that let you
see mathematical structure intuitively.

Remark. BIG BOSS LEVEL: This problem requires all the tactics you've
learned!

Theorem 9.1. Given a function with specific properties, we can prove a
complex statement involving existence and universals.

Statement (f : R— R) (h_existential : 3 (a : R), £ (a)
= 3)
(h_universal : V x > 0, f (x + 1) = f (x) + 9)
J(R, Vy>0, f (y+1)'2=C(f (y) + (f b)"2)"2

:= by
-- Step 1: Extract the witness from the existence
hypothesis

choose a ha using h_existential
-- Step 2: We’ll use a as our witness for b
use a

21

-- Step 3: Introduce the universal quantifier

intro y

intro hy

-- Step 4: Apply the universal property to our
specific value a

specialize h_universal y hy

-- Step 5: Rewrite using what we learned about f(y +
1

rewrite [h_universall]

-- Step 6: Rewrite using what we know about f(a)

rewrite [hal

-- Step 7: Simplify the algebra

ring_nf

9.2 Conclusion

VICTORY!

You've defeated the Big Boss and mastered all the fundamental tactics
of mathematical reasoning!

Let’s see what you just accomplished:

1. choose a ha using h_existential - Extracted the witness a and fact
that £ (a) = 3 from the hypothesis

2. use a - Chose a as your witness for the existence statement in the goal

3. intro y hy - Handled the universal quantifier “for all y > 0”7 in the
goal

4. specialize h_universal y hy- Applied the universal property to your
specific value in the hypothesis

5. rewrite [h_universal] - Used the specialized fact to rewrite the goal

6. rewrite [ha] - Used the original fact that £ (a) = 3 to also rewrite the
goal

7. ring_nf - Verified finally that (f y + 90~ 2= (f y + 3 ~ 2)" 2

22

You've just completed a genuinely sophisticated mathematical argument!
This kind of multi-step reasoning, combining existence statements, univer-
sal properties, and algebraic manipulation, is exactly what you’ll encounter
throughout real analysis.

You are now ready to begin your journey to rigorous calculus!

Welcome to the Introduction to Formal Real Analysis.

9.3 Epilogue

Before we continue with more Real Analysis and more Lean, let’s pause to
note a few interesting things about working formally. Using a theorem prover
interactively is (I hope) tremendously fun and (I hope) leads to rapid gains,
immediate feedback, and clarity of thought.

Imagine trying to learn chess by just reading through algebraic notation
- 1l.e4 e5 2.Nf3 Nf6 3.Bb5 a6 - sure, all the information is technically there,
but isn’t it so much easier to learn by actually looking at a chess board
and seeing how the position changes after each move? In mathematics, it
would be extraordinarily tedious to manually write on the blackboard the
entire goal state after every move, keeping track of all the hypotheses and
their relationships by hand. A theorem prover does this bookkeeping for you
automatically, letting you focus on the mathematical content rather than the
clerical work.

But! This is, as we've already noted, a double-edged sword. We still
want to train our brains to “see” a mental model of the goal state evolving -
good chess players can visualize many moves ahead precisely because they’ve
learned to maintain multiple mental game boards simultaneously. But until
you develop that skill, and even after you have it, there’s immense value
in being able to instantly generate the current “game board” of your proof
state. The immediate feedback helps you understand the consequences of
each logical move, building the very intuition that will eventually let you
work more independently. It’s the difference between learning to navigate by
always checking your GPS versus eventually developing an internal sense of
direction - both have their place, and the former helps develop the latter.

23

	Preamble
	Introduction to Lean
	Theorem Prover Software
	Conclusion

	The rfl tactic
	When things are identical to themselves
	Conclusion

	The rw tactic
	Rewriting with equalities
	Conclusion

	The ring_nf tactic
	Algebraic manipulations
	Conclusion

	The use tactic
	Proving existence
	Conclusion

	The intro tactic
	Universal statements
	Conclusion

	The specialize tactic
	Using universal statements
	Conclusion

	Big Boss: The Ultimate Tactic Challenge
	The Final Challenge
	Conclusion
	Epilogue

